•  
  •  
 

Coal Geology & Exploration

Abstract

Objective The practice of coal mine production has proved that the vast majority of coal and gas outbursts are controlled by geological structures, and mainly occur in tunnelling working site. Therefore, continuous advanced detection of geological structures is an important technical means to prevent and control coal and gas outbursts in tunnelling working site, and is of great significance to ensure safe production in mines. Methods Based on the research results of spectral acoustic method in Russia for many years, the resonance phenomenon generated at the weakened contact surface of the roof rock layer by the artificial acoustic signal excited by the coal cutting machine is utilized to construct the prediction coefficient of geological structure based on the stress index and frequency index. Through the monitoring and early warning system composed of seismometer, monitoring sub-station, industrial ring network, and monitoring host, the relative stress coefficient, spectral maximum frequency and geological structure prediction coefficient are calculated and analyzed in real time to realize the real-time monitoring and early warning of the geological structure of the tunnelling working site. Through cooperation between Chinese and Russian teams, an experimental study was conducted on the tunnelling working site of ventilation tunnel J15-15080 in the Eighth Coal Mine of Pingdingshan Tianan Coal Mining Co., Ltd. During the experiment, the tunnelling working site advanced continuously for 756 m, with seven faults being exposed.Results and Conclusions The experimental results demonstrate the high consistency between the anomaly areas of the monitoring indicator (i.e., the geologic structure prediction coefficient) of geologic structures and distribution of geologic structures in the mining face, with all geologic structures in the mining face identified within the anomaly areas of the monitoring indicator. At a certain distance in front of the exposed geologic structures, the geologic structure prediction coefficient inevitably increased and exceeded its critical value, which can be set at 7 to ensure 100% reliability for the monitoring and early warning of geologic structures. The advance warning distances were calculated at 6.5‒27.3 m based on the normal distance from the mining face to the fault strike and determined at 13.5‒44 m based on the heading direction of the mining face. The geologic structure prediction coefficients exhibited two distribution morphologies on both sides of a fault, i.e., single- and double-wing morphologies. The former refers to the case where the coefficients exceed the critical value in either the hanging wall or the footwall of the fault, while the latter denotes that the coefficients exceed the critical value in both the hanging wall and footwall of the fault. Based on the distribution of relative stress coefficients on a fault plane and the fault's hanging wall and footwall, the stress-strain zones near the fault can be categorized into zones with unilateral high stress, bilateral high stress, and overall high stress. The distances from high-stress zones to fault planes typically ranged from 3.2 to 28.0 m. The findings of this study will provide a new monitoring indicator and method for continuous online early warning in the advance detection of geologic structures in tunnelling working site.

Keywords

artificial acoustic signal, spectral acoustics, geologic structure, geologic structure prediction coefficient, relative stress coefficient

DOI

10.12363/issn.1001-1986.24.04.0250

Reference

[1] 程远平,王海锋,王亮,等. 煤矿瓦斯防治理论与工程应用[M]. 徐州:中国矿业大学出版社,2010.

[2] 卫修君,林柏泉. 煤岩瓦斯动力灾害发生机理及综合治理技术[M]. 北京:科学出版社,2009.

[3] 徐德宇,李国旗,李德全. 新安煤田煤与瓦斯突出特征及防治措施[J]. 中国安全生产科学技术,2016,12(11):52−56.

XU Deyu,LI Guoqi,LI Dequan. Study on coal and gas outburst characteristics and prevention and control measures in Xin’an coal field[J]. Journal of Safety Science and Technology,2016,12(11):52−56.

[4] 孔愨,吴桂义,钟锋,等. 贵州矿区煤与瓦斯突出特征及其防治对策[J]. 工矿自动化,2016,42(2):22−26.

KONG Que,WU Guiyi,ZHONG Feng,et al. Coal and gas outburst features in Guizhou mining areas and its prevention countermeasures[J]. Industry and Mine Automation,2016,42(2):22−26.

[5] ЮН马雷舍夫,AT艾鲁尼,ЮЛ胡金,等. 煤与瓦斯突出预测方法和防治措施[M]. 魏风清,张建国编译. 北京:煤炭工业出版社,2003.

[6] 国家煤矿安全监察局. 防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019.

[7] 李冬,杜文凤,许献磊. 矿井地质雷达超前探测方法及应用研究[J]. 煤炭科学技术,2018,46(7):223−228.

LI Dong,DU Wengfeng,XU Xianlei,et al. Study on advanced detection method and application of mine geological radar[J]. Coal Science and Technology,2018,46(7):223−228.

[8] 张瑞,郭红星,马彦龙. 顾桥煤矿随掘地震实时超前探测技术[J]. 现代矿业,2024,40(2):218−221.

ZHANG Rui,GUO Hongxing,MA Yanlong,et al. Real-time advanced earthquake with excavation detection technology in Guqiao coal mine[J]. Modern Mining,2024,40(2):218−221.

[9] 贾继平,韩小栋,田超超. 随掘超前探测技术在掘进巷道中的应用[J]. 陕西煤炭,2023,42(3):159−163.

JIA Jiping,HAN Xiaodong,TIAN Chaochao. Application of advance detection with excavation technology in excavation roadway[J]. Shaanxi Coal,2023,42(3):159−163.

[10] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9.

CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9.

[11] 曹运兴,张海洋,张震,等. 正断层上盘煤与瓦斯突出特征与地应力场控制机理[J]. 煤田地质与勘探,2022,50(4):61−69.

CAO Yunxing,ZHANG Haiyang,ZHANG Zhen,et al. Characteristics of coal and gas outburst and controlling mechanism of stress field in the hanging wall of normal faults[J]. Coal Geology & Exploration,2022,50(4):61−69.

[12] СМИРНОВ О В,КУЛИК А И,ЛАПИН Е А. Прогноз геологических нарушений по параметрам акустического сигнала[J]. Уголь,2015,11:76−79.

[13] МИРЕР С В,ХМАРА О И,МАСЛЕНЩИКОВ Е В. О контроле выбросоопасности забо¬ев по спектральным характеристикам акусти¬ческих сигналов[C]//Вопросы предотвращения внезапных выбросов. Москва:ИГД им. А.А. Скочинского,1987:52–61.

[14] ГЛИКМАН А Г. Поля упругих колебаний в горных породах[M]. Ленинград:Ленинградский горный институт,1985.

[15] ЛУНЕВ С Г,КОЛЧИН Г И. Акустический контроль выбросоопасности в очистном забое[C]//Способы и средства создания безопас¬ных и здоровых условий труда в угольных шахтах.Макеевка:МакНИИ,2004:97–107.

[16] БОБРОВ А И,АГАФОНОВ А В,КОЛЧИН Г И.Контроль динамических процессов в призабойной части горного массива[C]//Проблемы геодинамической безопасности. IIмеж-дународное рабочее совещание. Санкт-Петербург: ВНИМИ,1997:142–145.

[17] БРЮХАНОВ А М,АГАФОНОВ А В,РУБИНСКИЙ А А,и др.Методы и средства прогноза и предотвращения газодинамических явлений в угольных шахтах[C]//Расследование и предотвращение аварий на угольных шахтах. Донецк:Вебер,2007:24–38.

[18] Федеральная служба по экологическому,технологическому и атомному надзору.Инструкция по прогнозу динамических явлений и мониторингу массива горных пород при отработке угольных месторождений:339—2016[S]. Москва:2016.

[19] Федеральная служба по экологическому,технологическому и атомному надзору.Инструкция по прогнозу динамических явлений и мониторингу массива горных пород при отработке угольных месторождений:515—2020[S]. Москва:2020.

[20] Федеральная служба по экологическому,технологическому и атомному надзору.Рекомендации по безопасному ведению горных работ на склонных к динамическим явлениям угольных пластах:327—2017[S]. Москва:2017.

[21] Федеральная служба по экологическому,технологическому и атомному надзору.Рекомендации по безопасному ведению горных работ на склонных к динамическим явлениям угольных пластах:441—2023[S]. Москва:2023.

[22] КОПЫЛОВ К Н,СМИРНОВ О В,КУЛИК А И,и др. Испытания автоматизированной системы акустического контроля состояния массива горных пород[J]. Уголь,2015,7:44–48.

[23] СМИРНОВ О В,КУЛИК А И,ШИЛОВ В И,ГОРБАЧЁВ А С.Автоматизированный прогноз динамических явлений[J]. Добывающая промышленность,2016,2:79–82.

[24] АКСЕНОВ З В. Обоснование и разработка метода контроля напряженно-деформированного состояния призабойной части массива горных пород по искусственным акустическим сигналам для условий шахт ао《СУЭК-КУЗБАСС》[D]. Москва:Университет науки и технологий МИСИС ,2022.

[25] БРЮХАНОВ А М, АГАФОНОВ А В, РУБИНСКИЙ А А , КОЛЧИН Г И. Акустический контроль выбросоопасности[C]//Расследование и предотвращение аварий на угольных шахтах.Донецк: Вебер,2007:24–38.

[26] 张建国,魏风清,Владимир Иванович ШИЛОВ. 基于人工声学信号的岩体状态和动力现象监测系统САКСМ应用[J]. 煤矿安全,2022,53(2):149−155.

ZHANG Jianguo,WEI Fengqing, ШИЛОВ В И. Monitoring system for rock mass state and dynamic phenomenon based on artificial acoustic signal САКСМ application[J]. Safety in Coal Mines,2022,53(2):149−155.

[27] МИРЕР С В,ХМАРА О И,ШАДРИН А В. Спектральноакустический прогноз выбросоопасности угольных пластов[M]. Кемерово:Кузбассвузиздат,1999.

[28] ГЛИКМАН А Г. Физика и практика спектральной сейсморазведки[EB/OL]. (2002) [2024-04-15]. http://www.newgeophys.spb.ru/ru/book/index.shtml.

[29] 陈敏,张庆华,王麒翔. 断层对煤与瓦斯突出范围的影响[J]. 煤炭科学技术,2014,42(3):39−41.

CHEN Min,ZHANG Qinghua,WANG Qixiang. Effect on scope of coal and gas outburst by fault[J]. Coal Science and Technology,2014,42(3):39−41.

[30] 薛斌. 近断层掘进的煤层瓦斯赋存及突出危险性[J]. 陕西煤炭,2022,41(2):27–31.

XUE Bin. Coal seam gas occurrence and outburst dangerous in near-fault excavation[J]. Shaanxi Coal,2022,41(2):27–31.

[31] 唐猛. 含断层煤层群采动应力分布特征与断层力学响应规律研究[D]. 贵阳:贵州大学,2023.

TANG Meng. Study on distribution characteristics of mining stress and fault mechanical response law of coal seam groups with faults[D]. Guiyang:Guizhou University,2023.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.