Coal Geology & Exploration
Abstract
Objective This study aims to reveal the microscopic damage characteristics and permeability evolutionary patterns of high-temperature granite reservoirs fractured under cyclic thermal shock produced by low-temperature fluids like drilling fluids and circulating heat recovery media in the exploitation process of the enhanced geothermal systems (EGSs). Methods Using experiments on the fracturing characteristics of high-temperature granites under the conditions of varying cooling methods, numbers of thermal shock cycles, and cooling temperatures, this study determined microstructural characteristic parameters such as compressional wave (P-wave) velocity, pore volumetric fraction, and fractal dimension of granites across a temperature range of 25 to 700 ℃ under cooling via cyclic water injection and natural cooling. Using the CT scan-based 3D reconstruction technology and the interactive joint modeling technology based on Avizo-COMSOL, this study built a model describing the evolutionary characteristics of microscopic pore permeability. Employing this model, this study revealed the streamline distribution patterns of the seepage, pressure, and velocity fields during pore fluid flow and calculated the absolute permeability in the X, Y, and Z directions. Results and Conclusions Key findings are as follows: (1) The heat treatment temperature and the number of thermal shock cycles were negatively correlated with the P-wave velocity. Specifically, more thermal shock cycles corresponded to a more significant decrease in the P-wave velocity and more severe rock damage. Furthermore, the water cooling led to a more significant overall reduction in the P-wave velocity than air cooling. (2) In the case of granite temperature t≤300 ℃, CT scan slices revealed a small number of microcracks in granites, indicating poor connectivity. In contrast, at t≥400 ℃, microcracks and isolated pores occurred rapidly within granites, gradually forming an interconnected fracture network. Moreover, water cooling caused more significant internal damage-induced fracturing of granites. (3) The heterogeneity of microscopic pore structures resulted in differences in the calculation results of seepage in the X, Y, and Z directions. Consequently, the pore pressure decreased and the flow rate increased along the flow direction, with the flow rate surging sharply at locations where fracture channels narrowed. However, fluid retention or backflow was inevitable in some complex pore structures. The results of this study reveal the damage mechanisms and permeability evolutionary patterns of high-temperature granites under cyclic thermal shock, providing reliable parameters for the thermal stimulation of hot dry rock (HDR) reservoirs.
Keywords
high-temperature granite, cyclic thermal shock, CT scan-based 3D reconstruction, fracture criterion, Avizo-COMSOL, enhanced geothermal system (EGS)
DOI
10.12363/issn.1001-1986.24.05.0321
Recommended Citation
HE Jiangfu, REN Chengcheng, HE Kun,
et al.
(2024)
"Microscopic fracture characterization and permeability evolutionary patterns of granites under cyclic thermal shock,"
Coal Geology & Exploration: Vol. 52:
Iss.
12, Article 13.
DOI: 10.12363/issn.1001-1986.24.05.0321
Available at:
https://cge.researchcommons.org/journal/vol52/iss12/13
Reference
[1] 汪集暘,孔彦龙,段忠丰,等. “双碳” 目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探,2023,51(2):1−11.
WANG Jiyang,KONG Yanlong,DUAN Zhongfeng,et al. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration,2023,51(2):1−11.
[2] 李根生,武晓光,宋先知,等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报,2022,7(3):343−364.
LI Gensheng,WU Xiaoguang,SONG Xianzhi,et al. Status and challenges of hot dry rock geothermao resource exploitation[J]. Petroleum Science Bulletin,2022,7(3):343−364.
[3] ZHU Jialing,HU Kaiyong,LU Xinli,et al. A review of geothermal energy resources,development,and applications in China:Current status and prospects[J]. Energy,2015,93:466−483.
[4] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31.
WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31.
[5] 许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报 (地球科学版),2016,46(4):1139−1152.
XU Tianfu,YUAN Yilong,JIANG Zhenjiao,et al. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1139−1152.
[6] 李德威,王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学 (中国地质大学学报),2015,40(11):1858−1869.
LI Dewei,WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science(Journal of China University of Geosciences),2015,40(11):1858−1869.
[7] BREEDE K,DZEBISASHVILI K,LIU Xiaolei,et al. A systematic review of enhanced (or engineered) geothermal systems:Past,present and future[J]. Geothermal Energy,2013,1(1):4.
[8] ZHUANG Dengdeng,YIN Tubing,LI Qiang,et al. Effect of injection flow rate on fracture toughness during hydraulic fracturing of hot dry rock (HDR)[J]. Engineering Fracture Mechanics,2022,260:108207.
[9] KALAM S,AFAGWU C,AL JABERI J,et al. A review on non-aqueous fracturing techniques in unconventional reservoirs[J]. Journal of Natural Gas Science and Engineering,2021,95:104223.
[10] 冯波,许佳男,许天福,等. 化学刺激技术在干热岩储层改造中的应用与最新进展[J]. 地球科学与环境学报,2019,41(5):577−591.
FENG Bo,XU Jianan,XU Tianfu,et al. Application and recent progresses of chemical stimulation on hot dry rock reservoir modification[J]. Journal of Earth Sciences and Environment,2019,41(5):577−591.
[11] PAN Jiliang,XI Xun,WU Xu,et al. Physical properties evolution and microscopic mechanisms of granite modified by thermal and chemical stimulation[J]. Case Studies in Thermal Engineering,2023,41:102633.
[12] SIRATOVICH P A,VILLENEUVE M C,COLE J W,et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:265−280.
[13] 巩亮,韩东旭,陈峥,等. 增强型地热系统关键技术研究现状及发展趋势[J]. 天然气工业,2022,42(7):135−159.
GONG Liang,HAN Dongxu,CHEN Zheng,et al. Research status and development trend of key technologies for enhanced geothermal system[J]. Natural Gas Industry,2022,42(7):135−159.
[14] 郤保平,赵阳升. 600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报,2010,29(5):892−898.
XI Baoping,ZHAO Yangsheng. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 ℃[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):892−898.
[15] WU Yangchun,HUANG Linqi,LI Xibing,et al. Effect of cooling methods on mechanical behaviors and thermal damage distributions of granite:Experiments and simulations[J]. Geothermics,2023,114:102796.
[16] SHI Xiangchao,GAO Leiyu,WU Jie,et al. Effects of Cyclic Heating and Water Cooling on the Physical Characteristics of Granite[J]. Energies,2020,13(9):1–18.
[17] 古启雄,黄震,钟文,等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究[J]. 岩石力学与工程学报,2023,42(6):1450−1465.
GU Qixiong,HUANG Zhen,ZHONG Wen,et al. Study on the variations of pore structure and physico-mechanical properties of granite after high temperature cycling[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1450−1465.
[18] 李春,胡耀青,张纯旺,等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报,2020,39(9):1797−1807.
LI Chun,HU Yaoqing,ZHANG Chunwang,et al. Brazilian split characteristics and mechanical property evolution of granite after cyclic cooling at different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1797−1807.
[19] 朱振南,王殿永,杨圣奇,等. 不同冷却速率下干热花岗岩渗透率演化特征对比研究[J]. 岩石力学与工程学报,2024,43(2):385−398.
ZHU Zhennan,WANG Dianyong,YANG Shengqi,et al. A comparative study on permeability evolution of hot dry granite under different cooling rates[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):385−398.
[20] ZHU Dong,JING Hongwen,YIN Qian,et al. Mechanical characteristics of granite after heating and water-cooling cycles[J]. Rock Mechanics and Rock Engineering,2020,53(4):2015−2025.
[21] CUI Yuan,XUE Lei,ZHAI Mengyang,et al. Experimental investigation on the influence on mechanical properties and acoustic emission characteristics of granite after heating and water-cooling cycles[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2023,9(1):88.
[22] 赵阳升,孟巧荣,康天合,等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报,2008,27(1):28−34.
ZHAO Yangsheng,MENG Qiaorong,KANG Tianhe,et al. Micro-ct experimental technology and meso-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(1):28−34.
[23] 王嘉敏,王守光,李向上,等. 热冲击花岗岩力学响应及损伤特征显微CT试验研究[J]. 煤炭科学技术,2023,51(8):58−72.
WANG Jiamin,WANG Shouguang,LI Xiangshang,et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology,2023,51(8):58−72.
[24] BIRD M B,BUTLER S L,HAWKES C D,et al. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL[J]. Computers & Geosciences,2014,73:6−16.
[25] FAN Nan,WANG Jiren,DENG Cunbao,et al. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering,2020,81:103384.
[26] NI Xiaoming,MIAO Jie,LV Runsheng,et al. Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology[J]. Fuel,2017,200:199−207.
[27] 夏彬伟,廖传斌,罗亚飞,等. 基于分形理论的煤岩裂隙网络渗透率模型[J]. 煤田地质与勘探,2023,51(8):107−115.
XIA Binwei,LIAO Chuanbin,LUO Yafei,et al. Fractal theory-based permeability model of fracture networks in coals[J]. Coal Geology & Exploration,2023,51(8):107−115.
[28] 张志镇,高峰,高亚楠,等. 高温影响下花岗岩孔径分布的分形结构及模型[J]. 岩石力学与工程学报,2016,35(12):2426−2438.
ZHANG Zhizhen,GAO Feng,GAO Yanan,et al. Fractal structure and model of pore size distribution of granite under high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2426−2438.
[29] CAO Rihong,FANG Lei,QIU Xianyang,et al. Effect of heating–water cooling cycle treatment on the pore structure and shear fracture characteristics of granite[J]. Engineering Fracture Mechanics,2023,286:109263.
[30] 黄彦华,陶然,陈笑,等. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报,2023,45(4):739−747.
HUANG Yanhua,TAO Ran,CHEN Xiao,et al. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):739−747.
[31] 姜德义,郭朋煜,范金,等. 升温速率对高温作用后砂岩的宏细观性质影响[J]. 岩土力学,2022,43(10):2675−2688.
JIANG Deyi,GUO Pengyu,FAN Jinyang,et al. Effect of heating rate on macro and mesoscopic properties of sandstone after high temperature[J]. Geotechnics,2022,43(10):2675−2688.
[32] 王凯,付强,徐超,等. 考虑射束硬化的煤岩CT数据阈值分割方法及应用[J]. 煤田地质与勘探,2023,51(4):11−22.
WANG Kai,FU Qiang,XU Chao,et al. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. Coal Geology & Exploration,2023,51(4):11−22.
[33] 吴国铭,李熙喆,高树生,等. 基于分形理论探究碳酸盐岩CT图像二值化最佳阈值[J]. 石油地球物理勘探,2017,52(5):1025−1032.
WU Guoming,LI Xizhe,GAO Shusheng,et al. Optimal thresholding in carbonate reservoir CT image binarization based on fractal theory.[J]. Oil Geophysical Prospecting,2017,52(5):1025−1032.
[34] QIN Yan,TIAN Hong,XU Nengxiong,et al. Physical and mechanical properties of granite after high-temperature treatment[J]. Rock Mechanics and Rock Engineering,2020,53(1):305−322.
[35] 董赟盛,郤保平,何水鑫,等. 石灰岩热冲击破裂二维分形参数演化规律研究[J]. 岩石力学与工程学报,2022,41(增刊1):2823−2833.
DONG Yunsheng,XI Baoping,HE Shuixin,et al. Study on the evolution law of two-dimensional fractal parameters of thermal shock fracture of limestone[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup.1):2823−2833.
[36] 马新仿,张士诚,郎兆新. 分形理论在岩石孔隙结构研究中的应用[J]. 岩石力学与工程学报,2003,22(增刊1):2164–2167.
MA Xinfang,ZHANG Shicheng,LANG Zhaoxin. Application of fractal theory to pore structure research[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(Sup.1):2164–2167.
[37] 刘泉声,许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报,2000,19(4):408−411.
LIU Quansheng,XU Xichang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(4):408−411.
[38] ZHU Zhennan,KEMPKA T,RANJITH P G,et al. Changes in thermomechanical properties due to air and water cooling of hot dry granite rocks under unconfined compression[J]. Renewable Energy,2021,170:562−573.
[39] 王刚,杨鑫祥,张孝强,等. 基于DTM阈值分割法的孔裂隙煤岩体瓦斯渗流数值模拟[J]. 岩石力学与工程学报,2016,35(1):119−129.
WANG Gang,YANG Xinxiang,ZHANG Xiaoqiang,et al. Numerical simulation of gas flow in pores and fissures of coal based on segmentation of DTM threshold[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(1):119−129.
[40] ZHAO Yixin,SUN Yingfeng,LIU Shimin,et al. Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel,2018,215:102−110.
[41] SHARP J M Jr,SIMMONS C T. The compleat Darcy:New lessons learned from the first English translation of Les Fontaines Publiques de la Ville de Dijon[J]. Ground Water,2005,43(3):457−460.
[42] 邓申缘,姜清辉,商开卫,等. 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学,2021,42(6):1601−1611.
DENG Shenyuan,JIANG Qinghui,SHANG Kaiwei,et al. Effect of high temperature on micro-structure and permeability of granite[J]. Rock and Soil Mechanics,2021,42(6):1601−1611.
[43] 靳佩桦,胡耀青,邵继喜,等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报,2018,37(11):2556−2564.
JIN Peihua,HU Yaoqing,SHAO Jixi,et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2556−2564.
[44] 成泽鹏,郤保平,杨欣欣,等. 热冲击作用下花岗岩渗透性演变规律试验研究[J]. 太原理工大学学报,2021,52(2):198−203.
CHENG Zepeng,XI Baoping,YANG Xinxin,et al. Experimental study on the evolution of granite permeability under thermal shock[J]. Journal of Taiyuan University of Technology,2021,52(2):198−203.
[45] 张凯,段志波,张帆,等. 循环高温冷却作用后花岗岩渗透率演变试验[J]. 科学技术与工程,2022,22(22):9753−9759.
ZHANG Kai,DUAN Zhibo,ZHANG Fan,et al. Experiment on evolution of granite permeability after cyclic high temperature cooling[J]. Science Technology and Engineering,2022,22(22):9753−9759.
[46] 高红梅,兰永伟,郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报,2023,37(13):127−132.
GAO Hongmei,LAN Yongwei,GUO Nan. Study on microscopic pore structure and permeability of granite after temperature action[J]. Materials Reports,2023,37(13):127−132.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons