•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Investigating the micromechanical properties of minerals using nanoindentation tests is of great significance for revealing the microscale mechanisms behind mineral failure. Methods Focusing on the primary minerals in the surrounding rocks of red shales in a phosphate deposit, this study conducted qualitative and semi-quantitative analyses of these minerals, including their spatial distributions, using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and targeted nanoindentation tests, determining the micromechanical properties of the minerals. This study developed a discrete numerical calculation model for the microscopic nanoindentation of minerals based on Voronoi tessellation and compared the simulation results with the test results. Results and Conclusions The results indicate that the red shales contain four minerals, i.e., quartz, albitite, chlorite, and illite, which exhibit elastic modulus of 95.62, 78.13, 53.50, and 48.91 GPa, respectively. Among them, the quartz and albitite minerals exhibit the most favorable mechanical properties, while the chlorite and illite display the worst mechanical properties, indicating that the red shales are heterogeneous and multiphase materials. Laboratory tests indicate that anomalies such as inflection points with a stepped distribution pattern in the load-displacement curves were formed by the presence of internal defects and micropores in minerals. In contrast, the simulation results show that the sharp increase in the inflection point number of the load-displacement curves was caused by the sizes, content, and spatial distributions of mineral particle clusters. The minerals differed greatly in the type, quantity, proportion, and inclination distributions of microcracks after mineral impression. This can be employed to characterize the deterioration degree and microcrack propagation direction of the minerals during loading. The results of this study assist in predicting the cracking directions of minerals under loads, provide theoretical support for the analysis of microscopic mineral degradation, and serve as a reference for the disaster prevention of surrounding rocks under similar operating conditions.

Keywords

red shale, micromechanical property, nanoindentation test, Voronoi tessellation, mineral degradation

DOI

10.12363/issn.1001-1986.24.06.0370

Reference

[1] WANG Dongyi,LI Xibing,PENG Kang,et al. Geotechnical characterization of red shale and its indication for ground control in deep underground mining[J]. Journal of Central South University,2018,25(12):2979−2991.

[2] 周浪. 开阳磷矿区红页岩微观结构特征及蠕变特性研究[D]. 贵阳:贵州大学,2023.

ZHOU Lang. Study on microstructure and creep characteristics of red shale in Kaiyang phosphate deposit area[D]. Guiyang:Guizhou University,2023.

[3] 马振乾,周浪,左宇军,等. 薄层状红页岩细观破坏特性研究[J]. 煤田地质与勘探,2023,51(10):104−113.

MA Zhenqian,ZHOU Lang,ZUO Yujun,et al. Study on mesoscopic failure characteristics of layered red shale[J]. Coal Geology & Exploration,2023,51(10):104−113.

[4] 李地元,莫秋喆,韩震宇. 干湿循环作用下红页岩静态力学特性研究[J]. 铁道科学与工程学报,2018,15(5):1171−1177.

LI Diyuan,MO Qiuzhe,HAN Zhenyu. Study on static mechanical properties of red shale under dry-wet circulation[J]. Journal of Railway Science and Engineering,2018,15(5):1171−1177.

[5] 何忠国,李寿山,范文录,等. 马路坪矿深部红页岩巷道的稳定性分析[J]. 现代矿业,2012,28(3):99−100.

HE Zhongguo,LI Shoushan,FAN Wenlu,et al. Stability analysis of deep red shale roadway in Maluping Mine[J]. Modern Mining,2012,28(3):99−100.

[6] MAHABADI O K,RANDALL N X,ZONG Z,et al. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity[J]. Geophysical Research Letters,2012,39(1):L01303.

[7] 张艳博,张恩源,姚旭龙,等. 考虑矿物细观结构的岩石数字化模型构建及其应用[J]. 岩石力学与工程学报,2021,40(增刊2):3212−3226.

ZHANG Yanbo,ZHANG Enyuan,YAO Xulong,et al. Construction and application of rock digital model considering mineral meso-structure[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup.2):3212−3226.

[8] 罗国立,张科,齐飞飞,等. 基于3D打印的裂隙岩体力学特性尺寸效应及各向异性初探[J]. 岩土力学,2023,44(增刊1):107−116.

LUO Guoli,ZHANG Ke,QI Feifei,et al. Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing[J]. Rock and Soil Mechanics,2023,44(Sup.1):107−116.

[9] 罗军,李楠,王曦,等. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报,2024,38(11):1−13.

LUO Jun,LI Nan,WANG Xi,et al. Research progress of nanoindentation methods for measuring residual stress in critical materials of aero-engine[J]. Materials Reports,2024,38(11):1−13.

[10] 王宇迪,王鹤峰,杨尚余,等. 纳米压痕技术及其在薄膜/涂层体系中的应用[J]. 表面技术,2022,51(6):138−159.

WANG Yudi,WANG Hefeng,YANG Shangyu,et al. Nanoindentation technique and its application in film/coating system[J]. Surface Technology,2022,51(6):138−159.

[11] 黄健康,刘玉龙,刘光银,等. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报,2021,35(24):24117−24121.

HUANG Jiankang,LIU Yulong,LIU Guangyin,et al. Nanomechanical analysis of anisotropy of single crystal copper on micro-nano scale[J]. Materials Reports,2021,35(24):24117−24121.

[12] 王赵鑫,赵宏伟. 微纳米压痕测试技术:发展与应用[J]. 航空学报,2021,42(10):137−156. .

WANG Zhaoxin,ZHAO Hongwei. Micro-and nanoindentation testing techniques:Development and application[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):137−156.

[13] 魏振伟,刘昌奎,周静怡,等. 纳米压痕技术在工程材料研究中的应用[J]. 失效分析与预防,2018,13(4):255−260.

WEI Zhenwei,LIU Changkui,ZHOU Jingyi,et al. Application of nano-indentation in engineer materials research[J]. Failure Analysis and Prevention,2018,13(4):255−260.

[14] MUKHERJEE R,MISRA S. Nanomechanics of minerals:Understandings and developments through instrumented nanoindentation techniques[J]. Physics and Chemistry of Minerals,2023,50(1):10.

[15] BORODICH F M,BULL S J,EPSHTEIN S A. Nanoindentation in studying mechanical properties of heterogeneous materials[J]. Journal of Mining Science,2015,51(3):470−476.

[16] 邬小萍,吕琴丽,杨中元,等. 纳米压痕测试技术在复合材料中的应用研究[J]. 金属功能材料,2020,27(3):24−32.

WU Xiaoping,LYU Qinli,YANG Zhongyuan,et al. Application researching of nano-indentation test in composite materials[J]. Metallic Functional Materials,2020,27(3):24−32.

[17] 蔡益栋,贾丁,邱峰,等. 基于纳米压痕的煤岩微观力学特性及其影响因素剖析[J]. 煤炭学报,2023,48(2):879−890.

CAI Yidong,JIA Ding,QIU Feng,et al. Micromechanical properties of coal and its influencing factors based on nanoindentation[J]. Journal of China Coal Society,2023,48(2):879−890.

[18] 徐鼎平,柳秀洋,徐怀胜,等. 深埋花岗岩细观力学特性纳米压痕试验及参数均质化研究[J]. 中南大学学报(自然科学版),2021,52(8):2761−2771.

XU Dingping,LIU Xiuyang,XU Huaisheng,et al. Meso-mechanical properties of deep granite using nanoindentation test and homogenization approach[J]. Journal of Central South University (Science and Technology),2021,52(8):2761−2771.

[19] 郭敬杰,李伟,韩祥凯,等. 基于纳米压痕的构造煤与原生煤结构面力学特性[J]. 中国矿业大学学报,2024,53(3):509−523.

GUO Jingjie,LI Wei,HAN Xiangkai,et al. Mechanical properties instructural planes of tectonic coal and primary coal through nano-indentation[J]. Journal of China University of Mining & Technology,2024,53(3):509−523.

[20] SHI Xian,JIANG Shu,YANG Liu,et al. Modeling the viscoelasticity of shale by nanoindentation creep tests[J]. International Journal of Rock Mechanics and Mining Sciences,2020,127:104210.

[21] SHI Xian,HE Zhiliang,LONG Shengxiang,et al. Loading rate effect on the mechanical behavior of brittle longmaxi shale in nanoindentation[J]. International Journal of Hydrogen Energy,2019,44(13):6481−6490.

[22] SHI Xian,JIANG Shu,LU Shuangfang,et al. Investigation of mechanical properties of bedded shale by nanoindentation tests:A case study on lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing,China[J]. Petroleum Exploration and Development,2019,46(1):163−172.

[23] 陈平,韩强,马天寿,等. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发,2015,42(5):662−670.

CHEN Ping,HAN Qiang,MA Tianshou,et al. The mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development,2015,42(5):662−670.

[24] SUN Changlun,LI Guichen,GOMAH M E,et al. Creep characteristics of coal and rock investigated by nanoindentation[J]. International Journal of Mining Science and Technology,2020,30(6):769−776.

[25] 孙长伦,李桂臣,许嘉徽,等. 砂岩矿物组分流变特性纳米压痕实验研究[J]. 岩石力学与工程学报,2021,40(1):77−87.

SUN Changlun,LI Guichen,XU Jiahui,et al. Rheological characteristics of mineral components in sandstone based on nanoindentation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):77−87.

[26] MA Zhaoyang,ZHANG Chengpeng,PATHEGAMA G R,et al. Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation[J]. International Journal of Mining Science and Technology,2022,32(2):283−294.

[27] XU Peng,SHENG Mao,LIN Tianyi,et al. Influences of rock microstructure on acid dissolution at a dolomite surface[J]. Geothermics,2022,100:102324.

[28] 张帆,胡维,郭翰群,等. 热处理后花岗岩纳米压痕试验研究[J]. 岩土力学,2018,39(增刊1):235−243.

ZHANG Fan,HU Wei,GUO Hanqun,et al. Nanoindentation tests on granite after heat treatmen[J]. Rock and Soil Mechanics,2018,39(Sup.1):235−243.

[29] ZENG Lingping,AKHONDZADEH H,IQBAL M A,et al. Effect of fluid-shale interactions on shales micromechanics:Nanoindentation experiments and interpretation from geochemical perspective[J]. Journal of Natural Gas Science and Engineering,2022,101:104545.

[30] 唐旭海,邵祖亮,许婧璟,等. 高温–液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治,2022,4(1):18−28.

TANG Xuhai,SHAO Zuliang,XU Jingjing,et al. The degradation mechanism of granite after the cyclic treatment of heating and liquid nitrogen cooling[J]. Hazard Control in Tunnelling and Underground Engineering,2022,4(1):18−28.

[31] 孟筠青,牛家兴,夏捃凯,等. 纳米尺度下煤的力学性质及破坏机制研究[J]. 岩石力学与工程学报,2020,39(1):84−92.

MENG Junqing,NIU Jiaxing,XIA Junkai,et al. Study on mechanical properties and failure mechanisms of coal at the nanometer scale[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):84−92.

[32] 张兆鹏,张士诚,石善志,等. 基于纳米压痕实验和均匀化方法评价砾岩多尺度力学性质:以玛湖凹陷南斜坡致密砾岩储层为例[J]. 岩石力学与工程学报,2022,41(5):926−940.

ZHANG Zhaopeng,ZHANG Shicheng,SHI Shanzhi,et al. Evaluation of multi-scale mechanical properties of conglomerate using nanoindentation and homogenization methods:A case study on tight conglomerate reservoirs in southern slope of Mahu Sag[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):926−940.

[33] LU Yunhu,LI Yucheng,WU Yongkang,et al. Characterization of shale softening by large volume-based nanoindentation[J]. Rock Mechanics and Rock Engineering,2020,53(3):1393−1409.

[34] LIU Kouqi,OSTADHASSAN M,BUBACH B. Application of nanoindentation to characterize creep behavior of oil shales[J]. Journal of Petroleum Science and Engineering,2018,167:729−736.

[35] VANDAMME M,ULM F J,FONOLLOSA P. Nanogranular packing of C–S–H at substochiometric conditions[J]. Cement and Concrete Research,2010,40(1):14−26.

[36] 刘辙,王兆会. 基于Voronoi图的精细化PFC数值计算方法与应用[J]. 中国煤炭,2024,50(8):122−134.

LIU Zhe,WANG Zhaohui. Research and application of precise PFC numerical calculation method based on Voronoi diagram[J]. China Coal,2024,50(8):122−134.

[37] 孙浩,陈帅军,金爱兵,等. 基于Voronoi块体模型的砂岩力学特性研究[J]. 东北大学学报(自然科学版),2021,42(11):1600−1608.

SUN Hao,CHEN Shuaijun,JIN Aibing,et al. Study on mechanical properties of sandstone based on Voronoi block model[J]. Journal of Northeastern University (Natural Science),2021,42(11):1600−1608.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.