•  
  •  
 

Coal Geology & Exploration

Authors

ZENG Zhiwei, Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of Central Asian Orogenic Belt, Xinjiang University, Urumqi 830047, China; School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, ChinaFollow
LAI Peng, Xinjiang Yaxin Coalbed Methane Investment and Development Co., Urumqi 830009, China
TIAN Jijun, School of Earth Resources, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Tectonics and Petroleum Resources Ministry of Education, China University of Geoscience, Wuhan 430074, China
YANG Shuguang, CBM Research and Development Center of Xinjiang Coal Geological Bureau, Urumqi 830091, China
HU Zhenpeng, Xinjiang Yaxin Coalbed Methane Investment and Development Co., Urumqi 830009, China
WANG Bo, Xinjiang Yaxin Coalbed Methane Investment and Development Co., Urumqi 830009, China
YU Yu, Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of Central Asian Orogenic Belt, Xinjiang University, Urumqi 830047, China; School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China
WANG Haichao, Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of Central Asian Orogenic Belt, Xinjiang University, Urumqi 830047, China; School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, ChinaFollow
LIU Yunxuan, Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of Central Asian Orogenic Belt, Xinjiang University, Urumqi 830047, China; School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China
YUAN Yixuan, Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of Central Asian Orogenic Belt, Xinjiang University, Urumqi 830047, China; School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China

Abstract

Objective Underground coal gasification (UCG) is an innovation in traditional coal mining technology. The prerequisites for successful UCG include developing a systematic geological evaluation system and scientifically selecting the optimal coal seam.Methods Using mathematical analysis methods such as analytic hierarchy process (AHP), coefficient of variation method, and technique for order preference by similarity to ideal solution (TOPSIS), this study systematically analyzed the coal quality, coal seam occurrence, hydrology, surrounding rocks, geological structures, hazardous elements, and geological exploration degree of coal reservoirs in the Aidinghu mining area, Turpan-Hami coalfield. Accordingly, this study deeply explored the feasibility of UCG in the Aidinghu mining area, constructed the resource evaluation system for selecting the optimal coal seam for UCG, and determined gasifier sites.Results and Conclusions The results indicate that the study area exhibits coals with low ranks and simple structures. The coal seams in the area display low moisture and ash contents, moderate volatile constituents, substantial quantity, simple geological structures, and moderate burial depths. The roofs and floors of the coal seams consist largely of mudstones, siltstones, and fine-grained sandstones, with faults being underdeveloped. Furthermore, the study area boasts abundant coal reserves, low hazardous element contents in the coal seams, and a high geological exploration degree. All these render the study area suitable for UCG. The second-level evaluation indices consist of 23 geological factors such as coal type, the burial depth of coal seams, the lithology of coal seam roofs and floors, and coal reserves. Using reasonable mathematical statistics and scientific quantitative transformation, this study determined the comprehensive weight and grades of these indices and established a multi-level resource evaluation system for selecting the optimal coal seam for UCG applicable to the study area. Using this evaluation system, as well as the weighted sum method and TOPSIS, this study determined that the top three coal seams favorable for UCG in the Aidinghu mining area are the upper part of the No.8 coal seam, the No.11 coal seam, and the No.7-3 coal seam sequentially. Finally, the upper part of the No.8 coal seam was identified as the most favorable coal seam for UCG in the study area. The results of this study provide a scientific basis for the subsequent UCG implementation in the study area and serve as a reference for selecting the optimal coal seam for UCG in other areas.

Keywords

Turpan-Hami coalfield, underground coal gasification(UCG), geological evaluation, selection of the optimal coal seam, evaluation system

DOI

10.12363/issn.1001-1986.24.03.0208

Reference

[1] 孔维敏,周永峰,易同生,等. 苏联煤炭地下气化产业化历史回顾与评述[J]. 煤田地质与勘探,2023,51(7):26−33.

KONG Weimin,ZHOU Yongfeng,YI Tongsheng,et al. UCG industrialization in the Soviet Union:history and comments[J]. Coal Geology & Exploration,2023,51(7):26−33.

[2] 陈井瑞,杨瑞召,韩枫涛,等. 煤炭地下气化开发利用现状与发展趋势 [J]. 中国煤炭,2024,50 (2):13–23.

CHEN Jingrui,YANG Ruizhao,HAN Fengtao,et al. Present situation and development trend of underground coal gasification development and utilization[J]. China Coal,2024,50 (2):13–23.

[3] 张曼婷,付炜,王凯. 贵州省煤炭地下气化选址的地质影响因素[J]. 天然气技术与经济,2020,14(6):29−32+58.

ZHANG Manting,FU Wei,WANG Kai. Geological factors influencing on site selection of underground coal gasification in Guizhou Province[J]. Natural Gas Technology and Economy,2020,14(6):29−32+58.

[4] 蒋秀明,吴财芳. 煤炭地下气化地质可行性和工艺适用性研究现状与进展[J]. 煤田地质与勘探,2022,50(5):1−12.

JIANG Xiuming,WU Caifang. A review:Geological feasibility and technological applicability of underground coal gasification[J]. Coal Geology & Exploration,2022,50(5):1−12.

[5] 王兴刚,范谭广,焦立新,等. 三塘湖盆地煤炭地下气化地质评价与有利区域[J]. 新疆石油地质,2023,44(3):307−313.

WANG Xinggang,FAN Tanguang,JIAO Lixin,et al. Geological evaluation and favorable areas of underground coal gasification in santanghu basin[J]. Xinjiang Petroleum Geology,2023,44(3):307−313.

[6] 黄温钢,王作棠. 煤炭地下气化变权–模糊层次综合评价模型[J]. 西安科技大学学报,2017,37(4):500−507.

HUANG Wengang,WANG zuotang. Comprehensive evaluation model of fuzzy analytic hierarchy process with variable weight for underground coal gasification[J]. Journal of Xi'an University of Science and Technology,2017,37(4):500−507.

[7] HUANG W G,WANG Z T,XIN L,et al. Feasibility study on underground coal gasification of No. 15 seam in Fenghuangshan mine[J]. Journal–South African Institute of Mining and Metallurgy,2012,112(10):897−903.

[8] XIA Tongqiang,ZHOU Fubao,GAO Feng,et al. Simulation of coal self-heating processes in underground methane-rich coal seams[J]. International Journal of Coal Geology,2015,141/142:1−12.

[9] DTI. Review of the feasibility of underground coal gasification in the UK[R]. London:Department of Trade and Industry,2004.

[10] KHADSE A,QAYYUMI M,MAHAJANI S,et al. Underground coal gasification:A new clean coal utilization technique for India[J]. Energy,2007,32(11):2061–2 071.

[11] SARHOSIS V,LAVIS S,MOSTADE M,et al. Towards commercialising underground coal gasification in the EU[J]. Environmental Geotechnics,2017,4(2):113−122.

[12] NIEĆ M,SERMET E,CHEĆKO J,et al. Evaluation of coal resources for underground gasification in Poland. Selection of possible UCG sites[J]. Fuel,2017,208:193−202.

[13] 刘淑琴,师素珍,冯国旭,等. 煤炭地下气化地质选址原则与案例评价[J]. 煤炭学报,2019,44(8):2531−2538.

LIU Shuqin,SHI Suzhen,FENG Guoxu,et al. Geological site selection and evaluation for underground coal gasification[J]. Journal of China Coal Society,2019,44(8):2531−2538.

[14] 周泽,汪凌霞,郭志军,等. 贵州省六盘水煤田煤炭地下气化资源评价[J]. 中国煤炭地质,2020,32(3):27−33.

ZHOU Ze,WANG Lingxia,GUO Zhijun,et al. Assessment of coal underground gasification resources in Lupanshui coalfield,Guizhou Province[J]. Coal Geology of China,2020,32(3):27−33.

[15] 尹振勇,许浩,汤达祯,等. 准东地区煤炭气化地质评价与有利区预测[J]. 科学技术与工程,2020,20(10):3845−3851.

YIN Zhenyong,XU Hao,TANG Dazhen,et al. Geological evaluation for underground coal gasification and favorable area optimization in eastern Junggar Basin[J]. Science Technology and Engineering,2020,20(10):3845−3851.

[16] 赵岳,黄温钢,徐强,等. 煤炭地下气化地质条件评价研究:以江苏省朱寨井田为例[J]. 河南理工大学学报(自然科学版),2018,37(3):1–11.

ZHAO Yue,HUANG Wengang,XU Qiang,et al. Study on evaluation of geological conditions for underground coal gasification:Taking Zhuzhai minefield of Jiangsu Province as an example[J] Journal of Henan Polytechnic University (Natural Science),2018,37(3):1–11.

[17] 何建国,马荣,王彦君等. 新疆艾丁湖矿区煤质特征及煤炭资源清洁利用方式探讨[J]. 中国矿业,2020,29(11):76−81.

HE Jianguo,MA Rong,WANG Yanjun,et al. Coal quality characteristics and clean utilization of coal resources in Aidinghu mining area,Xinjiang[J]. China Mining Magazine,2020,29(11):76−81.

[18] 刘洪林,王红岩,赵群,等. 吐哈盆地低煤阶煤层气地质特征与成藏控制因素研究[J]. 地质学报,2010,84(1):133−137.

LIU Honglin,WANG Hongyan,ZHAO Qun,et al. Geological characteristics of coalbed methane and controlling factors of accumulation in the Tuha Coal Basin[J]. Acta Geologica Sinica,2010,84(1):133−137.

[19] 刘淑琴,梁杰,余学东,等. 不同煤种地下气化特性研究[J]. 中国矿业大学学报,2003(6):624−628.

LIU Shuqin,LIANG Jie,YU Xuedong,et al. Characteristics of underground gasification of different kinds of coal[J]. Journal of China University of Mining & Technology,2003(6):624−628.

[20] 周贺. 煤炭地下气化地质选区主控因素及产气潜力评价[D]. 徐州:中国矿业大学,2022.

ZHOU He. Main controlling factors and gas production potential evaluation of geological selection area of underground coal gasification[D]. Xuzhou:China University of Mining and Technology,2022.

[21] 王晓磊, 陈贵锋, 李文博, 等. 双碳背景下煤炭清洁高效利用方向构建[J]. 煤质技术,2021,36(6):1−5.

WANG Xiaolei, CHEN Guifeng, LI Wenbo, et al. Construction of clean and efficient utilization direction of coal under the background of Double Carbon[J]. Coal Quality Technology,2021,36(6):1−5.

[22] 李伟,孙自强,马彦,等. 煤炭地下气化通道传热下顶板岩温度和应力研究[J]. 矿业安全与环保,2024,51(3):132−136.

LI Wei,SUN Ziqiang,MA Yan,et al. Study on roof rock temperature and stress under heat transfer in underground coal Gagasiification channel[J]. Mining Safety & Environmental Protection,2024,51(3):132−136.

[23] 王锦昌,刘刚,张辉,等. 深部煤层地下气化选址研究—以东胜气田J148地区为例[J]. 矿业科学学报,2024,9(2):156−166.

WANG Jinchang,LIU Gang,ZHANG Hui,et al. Study on site selection of underground gasification in deep coal seam:a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology,2024,9(2):156−166.

[24] 张金华,陈艳鹏,张梦媛,等. 水文地质条件与煤炭地下气化的相互影响 [J]. 煤炭工程,2021,53 (12):150–154.

ZHANG Jin hua,CHEN Yan peng,ZHANG Meng yuan,Interaction between hydrogeological conditions and underground coal gasification [J]. Coal Engineering,2021,53 (12):150–154.

[25] BIELOWICZ B,KASIŃSKI J R. The possibility of underground gasification of lignite from Polish deposits[J]. International Journal of Coal Geology,2014,131:304−318.

[26] VYAS D U,SINGH R P. Worldwide developments in UCG and Indian initiative[J]. Procedia Earth and Planetary Science,2015,11:29−37.

[27] 韩磊,秦勇,王作棠. 煤炭地下气化炉选址的地质影响因素[J]. 煤田地质与勘探,2019,47(2):44−50.

HAN Lei,QIN Yong,WANG Zuotang. Geological consideration for site selection of underground coal gasifier[J]. Coal Geology & Exploration,2019,47(2):44−50.

[28] 刘淑琴,陈思,李金刚,等. 深部煤层地下气化及其应用前景[J]. 煤炭转化,2007,30(3):79−81.

LIU Shuqin,CHEN Si,LI Jingang,et al. Deep coal seam underground gasification and application outlook[J]. Coal Conversion,2007,30(3):79−81.

[29] 赵泽乾,杨兆彪,易同生,等. 国外煤炭地下气化研究现状[J]. 中国煤炭地质,2023,35(4):1−10.

ZHAO Zeqian,YANG Zhaobiao,Yl Tongsheng,et al. Research status of underground coal gasification abroad[J]. Coal Geology of China,2023,35(4):1−10.

[30] 金黎黎,杨磊,吴亚荣,等. 欧盟国家煤炭地下气化先导试验历程与进展述评[J]. 煤田地质与勘探,2023,51(7):43−51.

JIN Lili,YANG Lei,WU Yarong,et al. UCG pilot tests in EU countries:A review of history and progress[J]. Coal Geology & Exploration,2023,51(7):43−51.

[31] 秦勇,易同生,汪凌霞,等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报,2023,48(1):290–306.

QIN Yong,YI Tongshen,WANG Linxia,et al. Analysis of geological conditions for risk control of UCG project[J] Journal of China Coal Society,2023,48(1):290–306.

[32] YANG Dongmin,KOUKOUZAS N,GREEN M,et al. Recent development on underground coal gasification and subsequent CO2 storage[J]. Journal of the energy institute,2016,89(4):469−484.

[33] XIN Lin,WANG Zuotang,WANG Gang,et al. Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China[J]. Fuel,2017,191:486−494.

[34] 黄温钢. 残留煤地下气化综合评价与稳定生产技术研究[D]. 徐州:中国矿业大学,2014.

HUANG Wengang. Study on comprehensive evaluation and stable production technology of underground gasification of residual coal[D]. Xuzhou:China University of Mining and Technology,2014.

[35] 刘淑琴,牛茂斐,闫艳等. 煤炭地下气化气化工作面径向扩展探测研究[J]. 煤炭学报,2018,43(7):2044–2051.

LIU Shuqin,NIU Maofei,YAN Yan,et al. Exploration of radial expansion of the gasification face from underground coal gasification[J] Journal of China Coal Society,2018,43(7):2044–2051.

[36] 刘淑琴,周蓉,潘佳,等. 煤炭地下气化选址决策及地下水污染防控[J]. 煤炭科学技术,2013,41(5):23−27.

LIU Shuqin,ZHOU Rong,PAN Jia,et al. Location selection and groundwater pollution prevention & control regarding underground coal gasification[J]. Coal Science and Technology,2013,41(5):23−27.

[37] 姚凯,刘洪涛,潘霞,等. 涌入水对煤炭地下气化影响的模型实验研究[J]. 煤炭转化,2011,34(3):27−30.

YAO Kai,LIU Hongtao,PAN Xia,et al. Model test on water inflow of underground coal gasification(UCG)[J]. Coal Conversion,2011,34(3):27−30.

[38] 李文军,魏家骏,苏倩倩,等. 煤炭地下气化过程对煤层上部岩层的传热分析[J]. 能源与节能,2016,124(1):3−4.

LI Wenjun,WEI Jiajun,SU Qianqian,et al. Analysis of heat transmission effect of underground coal gasification process on upper strata of coal seam[J]. Energy and Energy Conservation,2016,124(1):3−4.

[39] 赵明东,董东林,田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报,2017,2(1):5−10.

ZHAO Mingdong,DONG Donglin,TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology,2017,2(1):5−10.

[40] 周贺,吴财芳,蒋秀明,等. 煤炭地下气化地质选区指标体系构建及有利区评价技术[J]. 地球科学,2022,47(5):1777−1790.

ZHOU He,WU Caifang,JIANG Xiuming,et al. Construction of geological selection index system and evaluation technology of favorable area for underground coal gasification[J]. Earth Science,2022,47(5):1777−1790.

[41] 刘淑琴,张尚军,牛茂斐,等. 煤炭地下气化技术及其应用前景[J]. 地学前缘,2016,23(3):97−102.

LIU Shuqin,ZHANG Shangjun,NIU Maofei,et al. Technology process and application prospect of underground coal gasification[J]. Earth Science Frontiers,2016,23(3):97−102.

[42] 李因果,李新春. 综合评价模型权重确定方法研究[J]. 辽东学院学报(社会科学版),2007(2):92−97.

LI Yinguo,LI Xinchun. Research on the method of determining the weight of the comprehensive evaluation model[J]. Journal of Eastern Liaoning University (Social Science Edition),2007(2):92−97.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.