Coal Geology & Exploration
Abstract
Significance Near-horizontal directional long borehole is an important technical approach and effective means for preventing and controlling the gas disasters of coal mine. Negative pressure is an important factor affecting the gas drainage effect of directional long borehole. Advances Herein, the research progress on gas drainage through near-horizontal directional long borehole was systematically summarized from three aspects: the attenuation mechanism and distribution law of negative pressure in the borehole, gas drainage parameter monitoring technology, and intelligent control system for gas drainage. Regarding the attenuation mechanism and distribution law of negative pressure in the borehole, the basic theoretical research results concerning the impact of negative pressure on gas drainage, negative pressure attenuation mechanism, and the distribution law of negative pressure were summarized. In terms of gas drainage parameter monitoring technology, the current status of different types of gas monitoring instruments in the borehole, including the ultrasonic, laser, orifice plate, and recirculating self-excited types, as well as the borehole gas monitoring methods based on the beam tube method, was elaborated. Regarding the intelligent control system for gas drainage, the achievements in the research on the concept and technical equipment of gas drainage intelligent control were introduced. With the drainage parameters such as negative pressure, flow rate, and concentration as the analysis and control objects, and based on intelligent algorithms and PLC control technology, preliminary achievements have been made in the intelligent control of underground pipeline networks, thus improving the efficiency of gas drainage. Prospects The current deficiencies in the research were pointed out in the article, including the unclear variation patterns of negative pressure within directional long boreholes, the unclear mechanism of positive and negative pressure coupling effects, the lack of long-distance gas drainage parameter monitoring methods, and a shortage of multi-parameter gas monitoring methods, as well as the low intelligence level of the gas drainage control system. Meanwhile, the future research directions for gas drainage from directional long borehole were proposed, including the coupling mechanism of negative pressure drainage and positive pressure diffusion based on the special structure analysis of directional long borehole, the multi-parameter monitoring system of gas in borehole based on optical fiber sensing, and the fine control method of gas drainage parameters based on machine learning, which provides support for the design, construction, drainage and effect evaluation of gas control engineering in near-horizontal directional long borehole.
Keywords
gas drainage, directional long borehole, negative pressure, parameter monitoring, intelligent control system, coal mine
DOI
10.12363/issn.1001-1986.24.05.0284
Recommended Citation
LI Quanxin, CHENG Zhuoer, FANG Jun,
et al.
(2024)
"Research progress on variation pattern and monitoring control technology of negative pressure for gas drainage in directional long borehole,"
Coal Geology & Exploration: Vol. 52:
Iss.
11, Article 16.
DOI: 10.12363/issn.1001-1986.24.05.0284
Available at:
https://cge.researchcommons.org/journal/vol52/iss11/16
Reference
[1] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267.
LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
[2] 石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34.
SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34.
[3] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.
LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.
[4] 石智军,董书宁,杨俊哲,等. 煤矿井下3 000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1−7.
SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine[J]. Coal Geology & Exploration,2019,47(6):1−7.
[5] 李泉新,姚克,方俊,等. 煤矿井下瓦斯高效精准抽采定向钻进技术与装备[J]. 煤炭科学技术,2023,51(增刊1):65–72.
LI Quanxin,YAO Ke,FANG Jun,et al. Directional drilling technology and equipment for efficient and accurate gas extraction in underground coal mine[J]. Coal Science and Technology,2023,51(Sup.1):65–72.
[6] 田宏亮,张金宝,王力,等. 煤矿井下碎软煤层气动定向钻进技术与装备研究[J]. 煤田地质与勘探,2024,52(6):154−165.
TIAN Hongliang,ZHANG Jinbao,WANG Li,et al. Pneumatic directional drilling technology and equipment for broken-soft coal seams in underground coal mines[J]. Coal Geology & Exploration,2024,52(6):154−165.
[7] 杨伟锋,刘建林,刘飞,等. 大直径高位定向孔一次钻扩技术及瓦斯抽采效果分析[J]. 煤矿安全,2024,55(1):50−56.
YANG Weifeng,LIU Jianlin,LIU Fei,et al. Analysis of drilling and reaming technique of large diameter high directional hole and gas extraction effect[J]. Safety in Coal Mines,2024,55(1):50−56.
[8] 李旺年,张幼振,田宏亮,等. 基于煤岩可钻性的钻孔机器人自适应控制方法[J]. 工矿自动化,2023,49(6):182−188.
LI Wangnian,ZHANG Youzhen,TIAN Hongliang,et al. Adaptive control method for drilling robot based on coal and rock drillability[J]. Journal of Mine Automation,2023,49(6):182−188.
[9] 金鑫. 煤矿超长定向钻孔双侧瓦斯抽采效果研究[J]. 煤炭技术,2023,42(4):118−121.
JIN Xin. Study on gas drainage effect of double-side of super-long directional drilling borehole in colliery[J]. Coal Technology,2023,42(4):118−121.
[10] 李泉新,许超,刘建林,等. 煤矿井下全域化瓦斯抽采定向钻进关键技术与工程实践[J]. 煤炭学报,2022,47(8):3108−3116.
LI Quanxin,XU Chao,LIU Jianlin,et al. Key technology and practice of directional drilling for gas drainage in all the mining time and space in underground coal mine[J]. Journal of China Coal Society,2022,47(8):3108−3116.
[11] 孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.
SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.
[12] 柴建禄. 碎软煤层顺层定向孔区域递进式精准瓦斯抽采模式与实践[J]. 煤炭技术,2022,41(8):131−135.
CHAI Jianlu. Regional progressive precision gas drainage model and engineering practice by consequent layer directional hole in soft-fragmentized coal seam[J]. Coal Technology,2022,41(8):131−135.
[13] 刘忠全,陈殿赋,孙炳兴,等. 高瓦斯矿井超大区域瓦斯治理技术[J]. 煤炭科学技术,2021,49(5):120−126.
LIU Zhongquan,CHEN Dianfu,SUN Bingxing,et al. Gas control technology in super large area of high gassy mine[J]. Coal Science and Technology,2021,49(5):120−126.
[14] 王勇,马金魁. 顶板定向长钻孔“以孔代巷” 抽采瓦斯技术研究[J]. 矿业安全与环保,2019,46(5):95−98.
WANG Yong,MA Jinkui. Gas drainage technology by directional long borehole in roof to replace gateway[J]. Mining Safety & Environmental Protection,2019,46(5):95−98.
[15] 张永将,邹全乐,杨慧明,等. 突出煤层群井上下联合抽采防突模式与关键技术[J]. 煤炭学报,2023,48(10):3713−3730.
ZHANG Yongjiang,ZOU Quanle,YANG Huiming,et al. Joint ground and underground gas extraction mode and its key technology for outburst coal seam group[J]. Journal of China Coal Society,2023,48(10):3713−3730.
[16] 汪皓. 突出煤层定向钻进随钻瓦斯参数动态反演及消突效果评价研究[D]. 徐州:中国矿业大学,2020.
WANG Hao. Research on the outburst elimination effect evaluation and dynamic inversion model of gas parameters while drilling for the outburst coal seam based on directional drilling[D]. Xuzhou:China University of Mining and Technology,2020.
[17] 王兆丰,刘慧鹏,杨宏民,等. 伏岩煤业抽采负压沿钻孔深度变化规律[J]. 煤矿安全,2013,44(10):156−157.
WANG Zhaofeng,LIU Huipeng,YANG Hongmin,et al. Changing laws of drainage negative pressure along with the change of drilling depth in fuyan coal industry[J]. Safety in Coal Mines,2013,44(10):156−157.
[18] 张槐森,秦玉金,苏伟伟. 负压对瓦斯抽采效果的影响机制研究[J]. 煤矿安全,2019,50(8):23−26.
ZHANG Huaisen,QIN Yujin,SU Weiwei. Study on influence mechanism of negative pressure on gas drainage effect[J]. Safety in Coal Mines,2019,50(8):23−26.
[19] 刘建元,刘军,陈攀. 孔口负压对抽采效果的影响规律研究[J]. 煤炭技术,2016,35(10):160−162.
LIU Jianyuan,LIU Jun,CHEN Pan. Study on drainage effect law under negative pressure[J]. Coal Technology,2016,35(10):160−162.
[20] 程远平,董骏,李伟,等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报,2017,42(6):1466−1474.
CHENG Yuanping,DONG Jun,LI Wei,et al. Effect of negative pressure on coalbed methane extraction and application in the utilization of methane resource[J]. Journal of China Coal Society,2017,42(6):1466−1474.
[21] 尹光志,李铭辉,李生舟,等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报,2013,38(4):535−541.
YIN Guangzhi,LI Minghui,LI Shengzhou,et al. 3D numerical simulation of gas drainage from boreholes based on solid-gas coupling model of coal containing gas[J]. Journal of China Coal Society,2013,38(4):535−541.
[22] 司鹄,郭涛,李晓红. 钻孔抽放瓦斯流固耦合分析及数值模拟[J]. 重庆大学学报,2011,34(11):105−110.
SI Hu,GUO Tao,LI Xiaohong. Analysis and numerical simulation of fluid-structure coupling of gas drainage from boreholes[J]. Journal of Chongqing University,2011,34(11):105−110.
[23] 赵忠明,董伟,魏国营,等. 百米钻孔瓦斯流量数值模拟研究及应用[J]. 采矿与安全工程学报,2018,35(2):436−441.
ZHAO Zhongming,DONG Wei,WEI Guoying,et al. Numerical simulation study and application of hectometre borehole gas flowrate[J]. Journal of Mining & Safety Engineering,2018,35(2):436−441.
[24] 许江,刘龙荣,彭守建,等. 不同吸附性气体抽采过程中煤储层参数演化特征研究[J]. 岩土力学,2017,38(6):1647−1656.
XU Jiang,LIU Longrong,PENG Shoujian,et al. Evolution characteristics of coal reservoir parameters in different adsorption gas extraction process[J]. Rock and Soil Mechanics,2017,38(6):1647−1656.
[25] 张超林,许江,彭守建,等. 钻孔数量对瓦斯抽采量及抽采时间的影响[J]. 中国矿业大学学报,2019,48(2):287−294.
ZHANG Chaolin,XU Jiang,PENG Shoujian,et al. Effect of borehole amounts on gas drainage quantity and drainage time[J]. Journal of China University of Mining & Technology,2019,48(2):287−294.
[26] 郭鑫,薛生. 超厚煤层定向钻孔瓦斯抽采负压优化研究[J]. 矿业研究与开发,2021,41(2):144−148.
GUO Xin,XUE Sheng. Optimization study on negative pressure of gas drainage in directional drilling of ultra thick coal seam[J]. Mining Research and Development,2021,41(2):144−148.
[27] 王登科,彭明,付启超,等. 瓦斯抽采过程中的煤层透气性动态演化规律与数值模拟[J]. 岩石力学与工程学报,2016,35(4):704−712.
WANG Dengke,PENG Ming,FU Qichao,et al. Evolution and numerical simulation of coal permeability during gas drainage in coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(4):704−712.
[28] 齐黎明,祁明,陈学习. 抽采钻孔周围煤层瓦斯压力分布理论分析及应用[J]. 中国安全科学学报,2018,28(7):102−108.
QI Liming,QI Ming,CHEN Xuexi. Theoretical analysis of coal seam gas pressure distribution around drainage hole and its application[J]. China Safety Science Journal,2018,28(7):102−108.
[29] LIU Jia,QIN Yueping,ZHANG Shan,et al. Numerical solution for borehole methane flow in coal seam based on a new dual-porosity model[J]. Journal of Natural Gas Science and Engineering,2019,68:102916.
[30] 王凯,赵旭生,戴林超. 顺层瓦斯抽采钻孔内负压分布规律研究[J]. 煤矿安全,2014,45(5):1−4.
WANG Kai,ZHAO Xusheng,DAI Linchao. Research on negative pressure distribution law for bedding gas extraction borehole[J]. Safety in Coal Mines,2014,45(5):1−4.
[31] 徐超,王建文,杜昌昂,等. 瓦斯抽采长钻孔负压沿孔长衰减机制及影响因素模拟研究[J]. 采矿与安全工程学报,2021,38(2):419−428.
XU Chao,WANG Jianwen,DU Chang’ang,et al. Simulation of attenuation mechanism of negative pressure along the hole length of long boreholes in gas drainage and its influencing factors[J]. Journal of Mining & Safety Engineering,2021,38(2):419−428.
[32] QI Qingjie,JIA Xinlei,ZHOU Xinhua,et al. Instability-negative pressure loss model of gas drainage borehole and prevention technique:A case study[J]. PLoS One,2020,15(11):e0242719.
[33] 焦荣坤,张学博,栗翌. 钻孔不同变形失稳时抽采负压分布规律研究[J]. 工矿自动化,2019,45(5):40−45.
JIAO Rongkun,ZHANG Xuebo,LI Yi. Research on negative pressure distribution laws of drainage borehole with different deformation and instability[J]. Industry and Mine Automation,2019,45(5):40−45.
[34] 张学博,王文元,沈帅帅. 钻孔变形失稳条件下抽采负压及流量分布规律试验研究[J]. 煤炭科学技术,2020,48(10):45−51.
ZHANG Xuebo,WANG Wenyuan,SHEN Shuaishuai. Experimental study on distribution of negative pressure and flow rate under conditions of deformation and instability of boreholes[J]. Coal Science and Technology,2020,48(10):45−51.
[35] 刘军. 预抽钻孔负压沿孔长变化特性及对瓦斯抽采效果影响研究[D]. 焦作:河南理工大学,2014.
LIU Jun. Study on dynamic character and the influence of negative pressure along axial direction of gas drainage bore[D]. Jiaozuo:Henan Polytechnic University,2014.
[36] 胡鹏. 煤层瓦斯抽放钻孔单向流动负压分布规律的研究[D]. 焦作:河南理工大学,2009.
HU Peng. Study on the distribution of vacuum in a gas drainage borehole and coal seam[D]. Jiaozuo:Henan Polytechnic University,2009.
[37] 李杰. 预抽瓦斯钻孔抽采效果沿孔长变化规律研究[D]. 焦作:河南理工大学,2012.
LI Jie. Research on extraction effect change law along the drainage drilling hole[D]. Jiaozuo:Henan Polytechnic University,2012.
[38] 李晓白,王凯. 顺层瓦斯抽采长钻孔内负压分布规律研究[J]. 煤炭技术,2015,34(2):140−143.
LI Xiaobai,WANG Kai. Theoretical research on negative pressure distribution law of long coal seam hole[J]. Coal Technology,2015,34(2):140−143.
[39] 李涛. 智能瓦斯抽采监控系统[J]. 智能矿山,2023,4(8):57−59.
LI Tao. Intelligent gas extraction monitoring system[J]. Journal of Intelligent Mine,2023,4(8):57−59.
[40] 周少玺. 孔板流量计在瓦斯抽采计量中的误差来源分析[J]. 能源与环保,2018,40(2):128−130.
ZHOU Shaoxi. Error source analysis of orifice flowmeter in gas extraction measurement[J]. China Energy and Environmental Protection,2018,40(2):128−130.
[41] 刘春峰,杨凌霄. 孔板流量计在煤矿瓦斯抽采计量中的应用及常见问题分析[J]. 煤矿安全,2017,48(11):175−178.
LIU Chunfeng,YANG Lingxiao. Application of qrifice plate flowmeter in coal mine gas drainage measurement and analysis of common problems[J]. Safety in Coal Mines,2017,48(11):175−178.
[42] 李波. CGWZ-100循环自激式流量计在煤矿瓦斯监测中的应用[J]. 煤矿安全,2012,43(6):61−63.
LI Bo. Application of CGWZ-100 loop self-oscillating flowmeter in the coal mine gas monitoring[J]. Safety in Coal Mines,2012,43(6):61−63.
[43] 傅国廷,李波. 煤矿瓦斯抽采监测准确计量技术应用[J]. 煤炭科学技术,2016,44(7):64−68.
FU Guoting,LI Bo. Accurate metrological technology applied to mine gas drainage monitoring and measuring[J]. Coal Science and Technology,2016,44(7):64−68.
[44] 陈鹏,成玮,陈祖国,等. 瓦斯抽采钻孔负压定点连续测定技术研究[J]. 华北科技学院学报,2022,19(4):48−55.
CHEN Peng,CHENG Wei,CHEN Zuguo,et al. Study on the continuous determination of negative pressure fixed point of gas extraction drilling[J]. Journal of North China Institute of Science and Technology,2022,19(4):48−55.
[45] 赵伟,张文康,刘德成,等. 抽采钻孔瓦斯浓度原位检测技术及应用[J]. 中国矿业,2023,32(6):138−145.
ZHAO Wei,ZHANG Wenkang,LIU Decheng,et al. In-situ detection technology and application of gas concentration in extraction borehole[J]. China Mining Magazine,2023,32(6):138−145.
[46] 丛琳. 煤矿井下钻孔内瓦斯浓度监测传感器研制[J]. 煤田地质与勘探,2022,50(2):150−155.
CONG Lin. Development of a methane concentration monitoring sensor in underground boreholes of coal mines[J]. Coal Geology & Exploration,2022,50(2):150−155.
[47] 赵旭生,马国龙. 煤矿瓦斯智能抽采关键技术研究进展及展望[J]. 煤炭科学技术,2021,49(5):27−34.
ZHAO Xusheng,MA Guolong. Research progress and prospect of key technology of intelligent gas drainage in coal mine[J]. Coal Science and Technology,2021,49(5):27−34.
[48] 马莉,石新莉,李树刚,等. 基于MPC的瓦斯抽采智能调控模型研究[J]. 煤炭科学技术,2022,50(8):82−90.
MA Li,SHI Xinli,LI Shugang,et al. Research on intelligent control model of gas drainage based on model predictive control[J]. Coal Science and Technology,2022,50(8):82−90.
[49] 陆建行. 煤矿井下瓦斯抽采参数场—区—网模型与智能调控系统研发[D]. 徐州:中国矿业大学,2023.
LU Jianhang. Development of a gas extraction parameter P-D-C model and intelligent control system for coal mine underground gas extraction[D]. Xuzhou:China University of Mining and Technology,2023.
[50] 周福宝,刘春,夏同强,等. 煤矿瓦斯智能抽采理论与调控策略[J]. 煤炭学报,2019,44(8):2377−2387.
ZHOU Fubao,LIU Chun,XIA Tongqiang,et al. Intelligent gas extraction and control strategy in coal mine[J]. Journal of China Coal Society,2019,44(8):2377−2387.
[51] 祝钊,贾振元,冯智鹏,等. 瓦斯抽采管路智能放水系统研究[J]. 煤矿安全,2013,44(1):94−96.
ZHU Zhao,JIA Zhenyuan,FENG Zhipeng,et al. Study on gas drainage pipeline intelligent water system[J]. Safety in Coal Mines,2013,44(1):94−96.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons