Coal Geology & Exploration
Abstract
Objective The presence of surface-related multiples results in a lower accuracy in seismic data interpretations, and the effective multiple attenuation is a key step in seismic data processing. Multiples are coherent noise signals with similar characteristics to effective signals. It is difficult impossible to distinguish multiple signals from full-wave field data using a traditional convolutional neural network (CNN). Additionally, since the surface-related multiples vary significantly with surveyed areas, the CNN method will face more severe challenges when being transferred to other networks. Methods This study developed a CNN method based on the normal moveout correction (NMO) domain by introducing physical priors. The CNN was trained using the differences in curvature characteristics between the primary waves and multiples in the NMO domain, aiming to achieve effective multiple identification and attenuation. The performance of this method was tested using simulations and practical data. Results and Conclusions Experimental results indicate that the CNN trained in the NMO domain can effectively identify and attenuate multiples while protecting the reflected signals of primary waves. Compared to the traditional Radon algorithm, the proposed method exhibits reduced manual parameter adjustments and calculation complexity, along with less leakage of effective signals. Compared to direct end-to-end CNN-based methods for surface-related multiple attenuation, the novel method is more adaptable to new data. The results of this study can provide a new philosophy for improving the accuracy of seismic data interpretations and reducing the calculation cost.
Keywords
surface-related multiples, convolutional neural network(CNN), normal moveout correction(NMO), coherent noise, multiple attenuation
DOI
10.12363/issn.1001-1986.24.07.0482
Recommended Citation
HUANG Zhufu, LIU Jianfeng, FANG Wenqian,
et al.
(2024)
"Surfaced-related multiple attenuation using the CNN method in the NMO domain,"
Coal Geology & Exploration: Vol. 52:
Iss.
11, Article 15.
DOI: 10.12363/issn.1001-1986.24.07.0482
Available at:
https://cge.researchcommons.org/journal/vol52/iss11/15
Reference
[1] WIGGINS J W. Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction[J]. Geophysics,1988,53(12):1527−1539.
[2] BERKHOUT A J. Estimation of multiple scattering by iterative inversion,part I:Theoretical considerations[J]. Geophysics,1997,62(5):1586.
[3] BERKHOUT A J,VERSCHUUR D J. Imaging of multiple reflections[J]. Geophysics,2006,71(4):SI209−SI220.
[4] 李翔,胡天跃. 逆散射级数法去除自由表面多次波[J]. 地球物理学报,2009,52(6):1633−1640.
LI Xiang,HU Tianyue. Surface-related multiple removal with inverse scattering series method[J]. Chinese Journal of Geophysics,2009,52(6):1633−1640.
[5] 李振春,刘建辉,郭朝斌,等. 基于扩展伪多道匹配的保幅型多次波压制方法[J]. 石油地球物理勘探,2011,46(2):207−210.
LI Zhenchun,LIU Jianhui,GUO Chaobin,et al. Amplitude-preserved multiple suppression based on expanded pseudo-multi-channel matching[J]. Oil Geophysical Prospecting,2011,46(2):207−210.
[6] 王新领,赵明,但志伟,等. 在τ-p域多道分频自适应匹配减法压制多次波[J]. 工程地球物理学报,2017,14(1):84−89.
WANG Xinling,ZHAO Ming,DAN Zhiwei,et al. The adaptive matching subtraction of multichannel frequency division suppressing multiple waves in τ-p domain[J]. Chinese Journal of Engineering Geophysics,2017,14(1):84−89.
[7] 孙宁娜,曾同生,戴晓峰,等. 基于多窗口联合优化的多次波自适应相减方法[J]. 石油物探,2022,61(3):463−472.
SUN Ningna,ZENG Tongsheng,DAI Xiaofeng,et al. Adaptive multiple subtraction based on multi-windows joint optimization[J]. Geophysical Prospecting for Petroleum,2022,61(3):463−472.
[8] 陈习峰,薛永安,黄新武. 自适应加权混合L1/L2范数匹配相减多次波压制方法[J]. 石油物探,2019,58(4):524−532.
CHEN Xifeng,XUE Yong’an,HUANG Xinwu. Adaptive subtraction for multiples suppression using hybrid L1/L2 norm[J]. Geophysical Prospecting for Petroleum,2019,58(4):524−532.
[9] MORLEY L,CLAERBOUT J. Predictive deconvolution in shot-receiver space[J]. Geophysics,1983,48(5):515−531.
[10] 吴战培. 炮点域动校正后F-K滤波[J]. 石油地球物理勘探,1995,30(3):422−423.
WU Zhanpei. F-K filtering after shot-point domain dynamic correction[J]. Oil Geophysical Prospecting,1995,30(3):422−423.
[11] 胡天跃,王润秋,R. E. White. 地震资料处理中的聚束滤波方法[J]. 地球物理学报,2000,43(1):105−115.
HU Tianyue,WANG Runqiu,WHITE R E. Beamforming in seismic data processing[J]. Chinese Journal of Geophysics,2000,43(1):105−115.
[12] 熊登,赵伟,张剑锋. 混合域高分辨率抛物Radon变换及在衰减多次波中的应用[J]. 地球物理学报,2009,52(4):1068−1077.
XIONG Deng,ZHAO Wei,ZHANG Jianfeng. Hybrid-domain high-resolution parabolic Radon transform and its application to demultiple[J]. Chinese Journal of Geophysics,2009,52(4):1068−1077.
[13] 陈泓竹,王彦春. 频率域拉东变换加权约束反演压制层间多次波[J]. 石油地球物理勘探,2018,53(4):666−673.
CHEN Hongzhu,WANG Yanchun. Peg-leg multiple suppression with the weight-constrain inversion of Radon transform in the frequency domain in Songliao Basin[J]. Oil Geophysical Prospecting,2018,53(4):666−673.
[14] LI Chao,YUE Wenzheng. High-resolution Radon transforms for improved dipole acoustic imaging[J]. Geophysical Prospecting,2017,65(2):467−484.
[15] 薛亚茹,郭蒙军,冯璐瑜,等. 应用加权迭代软阈值算法的高分辨率Radon变换[J]. 石油地球物理勘探,2021,56(4):736−744.
XUE Yaru,GUO Mengjun,FENG Luyu,et al. High resolution Radon transform based on the reweighted-iterative soft threshold algorithm[J]. Oil Geophysical Prospecting,2021,56(4):736−744.
[16] 马继涛,刘仕友,廖震. 三维高精度保幅Radon变换多次波压制方法[J]. 石油地球物理勘探,2022,57(3):582−592.
MA Jitao,LIU Shiyou,LIAO Zhen. Research on multiple attenuation using 3D highprecision amplitude-preserving Radon transform[J]. Oil Geophysical Prospecting,2022,57(3):582−592.
[17] SUN Wenzhi,LI Zhenchun,QU Yingming,et al. Multiple attenuation using λ-f domain high-order and high-resolution Radon transform based on SL0 norm[J]. Applied Geophysics,2019,16(4):473−482.
[18] LU Wenkai. An accelerated sparse time-invariant Radon transform in the mixed frequency-time domain based on iterative 2D model shrinkage[J]. Geophysics,2013,78(4):V147−V155.
[19] 张全,雷芩,林柏栎,等. 基于贪婪—快速迭代收缩阈值的Radon变换及其在多次波压制中的应用[J]. 石油地球物理勘探,2022,57(6):1332−1341.
ZHANG Quan,LEI Qin,LIN Baiyue,et al. Radon transform based on greedy fast iterative shrinkage threshold and its application in multiple suppression[J]. Oil Geophysical Prospecting,2022,57(6):1332−1341.
[20] SONG Huan,MAO Weijian,TANG Huanhuan,et al. Multiple attenuation based on connected-component analysis and high-resolution parabolic Radon transform[J]. Journal of Applied Geophysics,2022,199:104580.
[21] 王坤喜,胡天跃,刘小舟,等. 基于数据增广训练的深度神经网络方法压制地震多次波[J]. 地球物理学报,2021,64(11):4196−4214.
WANG Kunxi,HU Tianyue,LIU Xiaozhou,et al. Suppressing seismic multiples based on the deep neural network method with data augmentation training[J]. Chinese Journal of Geophysics,2021,64(11):4196−4214.
[22] 刘小舟,胡天跃,刘韬,等. 数据增广的编解码卷积网络地震层间多次波压制方法[J]. 石油地球物理勘探,2022,57(4):757−767.
LIU Xiaozhou,HU Tianyue,LIU Tao,et al. Seismic internal multiple suppression method with encoder-decoder convolutional network based on data augmentation[J]. Oil Geophysical Prospecting,2022,57(4):757−767.
[23] 张猛. 基于自注意力机制的卷积自编码器多次波压制方法[J]. 石油物探,2022,61(3):454−462.
ZHANG Meng. A multiple suppression method based on self-attention convolutional auto-encoder[J]. Geophysical Prospecting for Petroleum,2022,61(3):454−462.
[24] WANG Kunxi,HU Tianyue,WANG Shangxu,et al. Seismic multiple suppression based on a deep neural network method for marine data[J]. Geophysics,2022,87(4):V341−V365.
[25] SIAHKOOHI A,VERSCHUUR D J,HERRMANN F J. Surface-related multiple elimination with deep learning[C]//SEG Technical Program Expanded Abstracts 2019. San Antonio,Texas. Society of Exploration Geophysicists,2019:4629–4634.
[26] 陈德武,杨午阳,魏新建,等. 基于混合网络U-SegNet的地震初至自动拾取[J]. 石油地球物理勘探,2020,55(6):1188−1201.
CHEN Dewu,YANG Wuyang,WEI Xinjian,et al. Automatic picking of seismic first arrivals based on hybrid network U-SegNet[J]. Oil Geophysical Prospecting,2020,55(6):1188−1201.
[27] 宋欢,毛伟建,唐欢欢. 基于深层神经网络压制多次波[J]. 地球物理学报,2021,64(8):2795−2808.
SONG Huan,MAO Weijian,TANG Huanhuan. Application of deep neural networks for multiples attenuation[J]. Chinese Journal of Geophysics,2021,64(8):2795−2808.
[28] LIU Xiaozhou,HU Tianyue,WANG Shangxu,et al. Seismic internal multiple suppression based on convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:3008505.
[29] IKELLE L T. A construct of internal multiples from surface data only:The concept of virtual seismic events[J]. Geophysical Journal International,2006,164(2):383−393.
[30] 刘嘉辉,胡天跃,彭更新. 自适应虚同相轴方法压制地震层间多次波[J]. 地球物理学报,2018,61(3):1196−1210.
LIU Jiahui,HU Tianyue,PENG Gengxin. Suppressing seismic inter-bed multiples with the adaptive virtual events method[J]. Chinese Journal of Geophysics,2018,61(3):1196−1210.
[31] WANG Kunxi,HU Tianyue,ZHAO Bangliu,et al. Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics[J]. Geophysics,2023,88(5):V387−V402.
[32] WANG Kunxi,HU Tianyue,WANG Shangxu. Unsupervised learning for seismic internal multiple suppression based on adaptive virtual events[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5914013.
[33] WANG Kunxi,HU Tianyue,ZHAO Bangliu. Seismic internal multiple attenuation based on unsupervised deep learning with a local orthogonalization constraint[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5917609.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons