•  
  •  
 

Coal Geology & Exploration

Abstract

Objective In order to identify the key geological structures in the metallogenic process of coal measures metal deposits, the Linxing block of Ordos Basin was taken as the research object. Based on the previous research results, geological data of the block, seismic and logging data, a geological model including tectonic volcanic activities and other events was constructed to analyze the key geological factors of deposit formation. Methods Firstly, based on the post-stack seismic data, the diffraction wave separation and imaging are realized by using the plane wave destruction filter technology, and the small-scale key geological information is extracted. Secondly, the attribute optimization is carried out by using the knowledge map combined with the actual situation of the study area, and the dominant attributes reflecting the structural characteristics such as variance, instantaneous frequency and root mean square amplitude are obtained. Taking the three-dimensional seismic attribute volume of the study area as the training sample, the mapping label is established based on the knowledge graph, and the U-Net multi-attribute fusion model is proposed by introducing the convolution block attention mechanism. The model uses three-channel seismic attributes as input and underground key geological structures ( such as faults or volcanic channels ) as output, and then constructs an intelligent identification method for key geological structures. Results and Conclusions The results show that the U-Net based on the knowledge map has high efficiency and accuracy in the identification of key geological structures of coal-bearing metal deposits. It can intuitively depict the three-dimensional distribution characteristics of key geological structures, reduce the artificial uncertainty of fault interpretation, and provide effective technical support for the study of coal-bearing metal deposits.

Keywords

coal-bearing metal deposit, geological structure identification, knowledge map, attribute fusion, deep learning

DOI

10.12363/issn.1001-1986.24.04.0280

Reference

[1] 邵龙义,徐小涛,王帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19−38.

SHAO Longyi,XU Xiaotao,WANG Shuai,et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. Journal of Palaeogeography (Chinese Edition),2021,23(1):19−38.

[2] CHYI L L. The distribution of gold and platinum in bituminous coal[J]. Economic Geology,1982,77(6):1592−1597.

[3] 秦国红,邓丽君,刘亢,等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,2016,44(6):8−14.

QIN Guohong,DENG Lijun,LIU Kang,et al. Characteristic of rare earth elements in coal in western margin of Ordos Basin[J]. Coal Geology & Exploration,2016,44(6):8−14.

[4] REN Deyi,ZHAO Fenghua,WANG Yunquan,et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology,1999,40(2/3):109−118.

[5] 廖家隆,张福强,韦梦蝶,等. 广西晚二叠世典型聚煤盆地中锂、镓丰度及富集因素[J]. 煤田地质与勘探,2020,48(1):77−84.

LIAO Jialong,ZHANG Fuqiang,WEI Mengdie,et al. Lithium and gallium abundance and enrichment factors in typical Late Permian coal-accumulating basin in Guangxi[J]. Coal Geology & Exploration,2020,48(1):77−84.

[6] 王冉. 黔西地区煤中金赋存分布与富集地球化学机理研究[D]. 徐州:中国矿业大学,2011.

WANG Ran. Study on occurrence and distribution of Au in the coals and its enrichment mechanism in Western Guizhou Province,China[D]. Xuzhou:China University of Mining and Technology,2011.

[7] 王文峰,王文龙,刘双双,等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探,2021,49(1):65−80.

WANG Wenfeng,WANG Wenlong,LIU Shuangshuang,et al. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. Coal Geology & Exploration,2021,49(1):65−80.

[8] SWAINE D J. Trace elements in coal[M]. London:Butterworth,1990.

[9] FINKELMAN R B,ARUSCAVAGE P J. Concentration of some platinum-group metals in coal[J]. International Journal of Coal Geology,1981,1(2):95−99.

[10] 曹代勇,秦国红,张岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150−2155.

CAO Daiyong,QIN Guohong,ZHANG Yan,et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150−2155.

[11] 曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66−85.

CAO Daiyong,WEI Yingchun,QIN Guohong,et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66−85.

[12] BOYLE R W. The geochemistry of gold and itsdeposits[J]. Canada Geol. 1979:280–579.

[13] 魏强,代世峰. 中国煤型锗矿床中的关键金属和有害元素:赋存特征与富集成因[J]. 煤炭学报,2020,45(1):296−303.

WEI Qiang,DAI Shifeng. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China:Occurrence characteristics and enrichment causes[J]. Journal of China Coal Society,2020,45(1):296−303.

[14] LIU Jingjing,DAI Shifeng,SONG Hongjian,et al. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield,western Guizhou,China[J]. International Journal of Coal Geology,2021,247:103855.

[15] DAI Shifeng,WANG Peipei,WARD C R,et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southWestern China:Key role of N2–CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19−46.

[16] 任德贻,赵峰华,张军营,等. 煤中有害微量元素富集的成因类型初探[J]. 地学前缘,1999(增刊1):17−22.

REN Deyi,ZHAO Fenghua,ZHANG Junying,et al. A preliminary study on genetic type of enrichment for hazardous minor and trace elements in coal[J]. Earth Science Frontiers,1999(Sup.1):17−22.

[17] 黄志勇. 黔西南高砷煤与卡林型金矿成因关系研究[D]. 贵阳:贵州大学,2008.

HUANG Zhiyong. Research on origin between high-arsenic coal and carlin-type gold deposit in southwestern of Guizhou Province[D]. Guiyang:Guizhou University,2008.

[18] SILLITOE R H. Gold deposits in Western Pacific Island arcs:The magmatic connection[M]//The geology of gold deposits. Society of Economic Geologists,1989:274–291.

[19] WHITE N C,LEAKE M J,MCCAUGHEY S N,et al. Epithermal gold deposits of the Southwest Pacific[J]. Journal of Geochemical Exploration,1995,54(2):87−136.

[20] 刘晶晶,韩秋婵,赵书茂,等. 贵州西部晚二叠世煤中关键金属异常富集的物质来源[J]. 煤炭学报,2022,47(5):1782−1794.

LIU Jingjing,HAN Qiuchan,ZHAO Shumao,et al. The sources of abnormally enriched critical metals in the Late Permian coals of Western Guizhou Province[J]. Journal of China Coal Society,2022,47(5):1782−1794.

[21] 赵蕾,王西勃,代世峰. 煤系中的锂矿产:赋存分布、成矿与资源潜力[J]. 煤炭学报,2022,47(5):1750−1760.

ZHAO Lei,WANG Xibo,DAI Shifeng. Lithium resources in coal-bearing strata:Occurrence,mineralization,and resource potential[J]. Journal of China Coal Society,2022,47(5):1750−1760.

[22] 张晓丽,何金先,董守华,等. 临兴地区太原组下段煤系泥页岩中战略性金属元素镓富集特征及成因分析[J]. 沉积学报,2022,40(6):1676−1690.

ZHANG Xiaoli,HE Jinxian,DONG Shouhua,et al. Enrichment characteristics and genetic analysis of strategic metal element gallium in coal shale of lower Taiyuan Formation in Linxing area[J]. Acta Sedimentologica Sinica,2022,40(6):1676−1690.

[23] BAHORICH M,FARMER S. 3-D seismic discontinuity for faults and stratigraphic features:The coherence cube[J]. The Leading Edge,1995,14(10):1053−1058.

[24] 李婷婷,侯思宇,马世忠,等. 断层识别方法综述及研究进展[J]. 地球物理学进展,2018,33(4):1507−1514.

LI Tingting,HOU Siyu,MA Shizhong,et al. Overview and research progress of fault identification method[J]. Progress in Geophysics,2018,33(4):1507−1514.

[25] 段春节,吴汉宁,马承杰,等. 基于高阶统计量的相干体算法在地震中深层构造解释中应用[J]. 地球物理学进展,2009,24(2):640−643.

DUAN Chunjie,WU Hanning,MA Chengjie,et al. The Application of higher-order statistics coherency algorithm in seismic datainterpretation[J]. Progress in Geophysics,2009,24(2):640−643.

[26] 李强. 方差体技术在转龙湾煤矿小断层解释中的应用[J]. 陕西煤炭,2019(6):122−124.

LI Qiang. Application of variance cube technology in the interpretation of small faults in Zhuanlongwan coal mine[J]. Shaanxi Coal,2019(6):122−124.

[27] SOLIS ESTRADA R,CABRERA C,LIEVANO R,et al. Continuous model update of natural fractures characterization in Sinan field to optimize production[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers,2005:-SPE-96963-MS.

[28] WANG Xinwei,SHI Suzhen,YAO Xujun,et al. Automatic identification of seismic faults via integrating Residual Network-50 residual blocks and convolutional block attention modules[J]. Applied Geophysics,2023,20(1):20−35.

[29] LIN Lei,ZHONG Zhi,CAI Zhongxian,et al. Automatic geologic fault identification from seismic data using 2.5D channel attention U-net[J]. Geophysics,2022,87(4):IM111−IM124.

[30] 曹磊,蔡峰. 基于地震属性融合技术的火山通道识别研究[J]. 地球物理学进展,2021,36(2):559−564.

CAO Lei,CAI Feng. Recognition research of volcanic conduit based on seismic attribute fusion technology[J]. Progress in Geophysics,2021,36(2):559−564.

[31] 于孝玉,阮宝涛,王志文,等. 火山岩气藏火山口多信息识别技术及应用[J]. 物探化探计算技术,2011,33(4):351−357.

YU Xiaoyu,RUAN Baotao,WANG Zhiwen,et al. Multi-information identification technique of crater and its application to volcanic gas reservoirs[J]. Computing Techniques for Geophysical and Geochemical Exploration,2011,33(4):351−357.

[32] 刘学通,周学锋,刘传奇,等. 中心式火山通道边界精细识别技术研究:以渤海A油田为例[J]. 地球物理学进展,2019,34(1):342−346.

LIU Xuetong,ZHOU Xuefeng,LIU Chuanqi,et al. Accurate boundary recognition research of central volcanic conduit:An example from Bohai A oilfield[J]. Progress in Geophysics,2019,34(1):342−346.

[33] 蔡冬梅,叶涛,鲁凤婷,等. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏,2018,30(1):112−120.

CAI Dongmei,YE Tao,LU Fengting,et al. Lithofacies characteristics and identification methods of Mesozoic volcanic rocks in Bohai Sea[J]. Lithologic Reservoirs,2018,30(1):112−120.

[34] 杨晓光,刘震,李自远,等. 利用分频重构技术预测古火山:以准噶尔盆地木垒凹陷为例[J]. 石油地球物理勘探,2018,53(4):805−816.

YANG Xiaoguang,LIU Zhen,LI Ziyuan,et al. Ancient volcanic prediction based on frequency division reconstruction in Mulei Sag,Junggar Basin[J]. Oil Geophysical Prospecting,2018,53(4):805−816.

[35] FOMEL S. Applications of plane-wave destruction filters[J]. Geophysics,2002,67(6):1946−1960.

[36] LIU Yang,FOMEL S,LIU Guochang. Nonlinear structure-enhancing filtering using plane-wave prediction[J]. Geophysical Prospecting,2010,58(3):415−427.

[37] 刘贵鑫,马中华. 改进Unet网络对叠后地震数据的断层识别[J]. 计算物理,2023,40(6):742−751.

LIU Guixin,MA Zhonghua. Fault identification of post stack seismic data by improved unet network[J]. Chinese Journal of Computational Physics,2023,40(6):742−751.

[38] 何涛,刘乃豪,吴帮玉,等. 基于ResU-Net的三维断层识别方法及应用[J]. 工程数学学报,2023,40(1):1−19.

HE Tao,LIU Naihao,WU Bangyu,et al. ResU-net based three-dimensional fault identification method and application[J]. Chinese Journal of Engineering Mathematics,2023,40(1):1−19.

[39] 钱龙龙,闫彬鹏. 基于全局信息提取的三维卷积神经网络断层智能识别[J/OL]. 地球物理学进展:1-15[2024-04-28].

QIAN Longlong,YAN Binpeng. Fault recognition using 3D convolutional neural network with global information extraction[J/OL]. Progress in Geophysics:1-15[2024-04-28].

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.