•  
  •  
 

Coal Geology & Exploration

Abstract

Objective and Methods Disasters associated with surrounding rocks in roadways, such as time-dependent deformation failure and creep-induced rock bursts, severely threaten deep mines in China. These disasters, coupled with the impacts of deep mining and structural changes, render it urgent to explore the evolutionary patterns of trans-scale discontinuous structures during the creeps of strongly disturbed coals. This study systematically reviews the scale effects of coals' mechanical properties, the discontinuous structures and multi-physics field effects of coals, and the long-term stability, creep evolutionary patterns, and mechanical models of coals. It highlights the close correlation between discontinuous structures (including their fractures and minerals) and physical and mechanical properties during the deformation and failure of different scales (mesoscopic, macroscopic, and engineering scales) and sizes (within the range of representative elementary volume (REV)) of coals. Results and Conclusions The results indicate that the trans-scale discontinuous structures of coals cause the nonuniformly distributed stress field, which results in mechanical anisotropy, scale effects, and size effects. Consequently, disharmonic macroscopic rupture will occur. The key to understanding the intrinsic disaster mechanisms of coals is the transparentized analysis and deduction of the evolutionary patterns of both trans-scale discontinuous structures and the multi-physics field during the deformation and rupture of coals. It is clear that existing creep experiments and models enjoy advantages in revealing the surface deformations and failure of coals. However, they fail to predict the deformations and discontinuous structures within coals. Hence, the authors of this study developed an approach that combines full-size computed tomography (CT) scanning and digital reconstruction, digital volume correlation (DVC), and trans-scale synthetic rock mass and grain-based modeling (SRM-GBM). This study explores the leading-edge issues related to the creeps of disturbed coals, introducing the new point of view that the creeps of coals are induced by internal deformation and damage caused by their discontinuous structures and stress. Accordingly, it proposes that discontinuous structures and stress serve as the dominant factors governing the disharmonic creeps of coals. Finally, this study developed new methods for fine-scale modeling and transparentized analysis for exploring the evolution of both trans-scale discontinuous structures and the multi-physics field during the creeps of strongly disturbed coals. The results of this study will lay the theoretical foundation for the occurrence mechanisms, early warning, and prevention and control of relevant mine disasters.

Keywords

strongly disturbed coal, creep essence, trans-scale discontinuous structure, internal strain field, damage evolution, transparentized analysis, computed tomography (CT) scanning and digital reconstruction, fine-scale modeling

DOI

10.12363/issn.1001-1986.24.04.0261

Reference

[1] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813.

HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813.

[2] 高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报,2020,45(8):2691−2703.

GAO Mingzhong,WANG Mingyao,XIE Jing,et al. In-situ disturbed mechanical behavior of deep coal rock[J]. Journal of China Coal Society,2020,45(8):2691−2703.

[3] KANG Hongpu,GAO Fuqiang,XU Gang,et al. Mechanical behaviors of coal measures and ground control technologies for China’s deep coal mines:A review[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):37−65.

[4] 赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报,2021,40(7):1297−1336.

ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(7):1297−1336.

[5] 黄炳香,张农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.

HUANG Bingxiang,ZHANG Nong,JING Hongwen,et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926

[6] 姜福兴,冯宇,KOUAME K J A,等. 高地应力特厚煤层 “蠕变型”冲击机理研究[J]. 岩土工程学报,2015,37(10):1762−1768.

JIANG Fuxing,FENG Yu,A KOUAME K J A,et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1762−1768.

[7] 鞠杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232.

JU Yang,REN Zhangyu,ZHENG Jiangtao,et al. Transparentized solutions and interpretation for the effects of discontinuous structures and multiphysics on rock failure[J]. Journal of China Coal Society,2022,47(1):210−232.

[8] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.

[9] 窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报,2015,40(7):1469−1476.

DOU Linming,HE Jiang,CAO Anye,et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society,2015,40(7):1469−1476.

[10] 潘一山. 冲击地压工程学[M]. 北京:高等教育出版社,2022.

[11] LI Gen,TANG Chun’an. A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2015,74:133−150.

[12] 周创兵,陈益峰,姜清辉. 岩体表征单元体与岩体力学参数[J]. 岩土工程学报,2007,29(8):1135−1142.

ZHOU Chuangbing,CHEN Yifeng,JIANG Qinghui. Representative elementary volume and mechanical parameters of fractured rock masses[J]. Chinese Journal of Geotechnical Engineering,2007,29(8):1135−1142.

[13] 伍法权,乔磊,管圣功,等. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报,2021,40(5):865−873.

WU Faquan,QIAO Lei,GUAN Shenggong,et al. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):865−873.

[14] 梁正召,张永彬,唐世斌,等. 岩体尺寸效应及其特征参数计算[J]. 岩石力学与工程学报,2013,32(6):1157−1166.

LIANG Zhengzhao,ZHANG Yongbin,TANG Shibin,et al. Size effect of rock messes and associated representative element properties[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1157−1166.

[15] 郭育霞,赵永辉,冯国瑞,等. 矸石胶结充填体单轴压缩损伤破坏尺寸效应研究[J]. 岩石力学与工程学报,2021,40(12):2434−2444.

GUO Yuxia,ZHAO Yonghui,FENG Guorui,et al. Study on damage size effect of cemented gangue backfill body under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2434−2444.

[16] 孟庆彬,韩立军,浦海,等. 应变速率和尺寸效应对岩石能量积聚与耗散影响的试验[J]. 煤炭学报,2015,40(10):2386−2398.

MENG Qingbin,HAN Lijun,PU Hai,et al. Experimental on the effect of strain rate and size on the energy accumulation and dissipation of rock[J]. Journal of China Coal Society,2015,40(10):2386−2398.

[17] 刘刚,肖福坤,秦涛. 小尺寸效应下岩石力学特性及声发射规律[J]. 岩石力学与工程学报,2018,37(增刊2):3905−3917.

LIU Gang,XIAO Fukun,QIN Tao. Rock mechanics characteristics and acoustic emission rule under small-size effect[J]. Journal of China Coal Society,2018,37(Sup.2):3905−3917.

[18] 张天军,郭海龙,景晨,等. 含孔软煤试样破坏过程的细观裂纹损伤演化机制[J]. 煤炭科学技术,2021,49(12):96−103.

ZHANG Tianjun,GUO Hailong,JING Chen,et al. Mechanism of meso-crack damage evolution in failure process of porous soft coal specimens[J]. Coal Science and Technology,2021,49(12):96−103.

[19] 杨科,张寨男,池小楼,等. 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学,2022,43(7):1791−1802.

YANG Ke,ZHANG Zhainan,CHI Xiaolou,et al. Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading[J]. Rock and Soil Mechanics,2022,43(7):1791−1802.

[20] 彭守建,张倩文,许江,等. 基于三维数字图像相关技术的砂岩渗流–应力耦合变形局部化特性试验研究[J]. 岩土力学,2022,43(5):1197−1206.

PENG Shoujian,ZHANG Qianwen,XU Jiang,et al. Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology[J]. Rock and Soil Mechanics,2022,43(5):1197−1206.

[21] 张庆贺,陈晨,袁亮,等. 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报,2022,47(3):1208−1219.

ZHANG Qinghe,CHEN Chen,YUAN Liang,et al. Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society,2022,47(3):1208−1219.

[22] 王本鑫,金爱兵,赵怡晴,等. 基于DIC的含3D打印起伏节理试样破裂特性及损伤本构[J]. 工程科学学报,2022,44(12):2029−2039.

WANG Benxin,JIN Aibing,ZHAO Yiqing,et al. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC[J]. Chinese Journal of Engineering,2022,44(12):2029−2039.

[23] MAO Lingtao,HAO Nai,AN Liqian,et al. 3D mapping of carbon dioxide-induced strain in coal using digital volumetric speckle photography technique and X-ray computer tomography[J]. International Journal of Coal Geology,2015,147:115−125.

[24] 苏海健,郭庆振,靖洪文,等. 基于3D打印的内置粗糙节理岩体力学特性研究[J]. 采矿与安全工程学报,2021,38(4):840−846.

SU Haijian,GUO Qingzhen,JING Hongwen,et al. Mechanical properties of rock mass with built-in rough joints based on 3D printing[J]. Journal of Mining & Safety Engineering,2021,38(4):840−846.

[25] 王文海,蒋力帅,何鑫,等. 基于砂型3D打印的复杂节理岩体变形破坏特征试验研究[J]. 岩石力学与工程学报,2024,43(3):754−767.

WANG Wenhai,JIANG Lishuai,HE Xin,et al. Experimental study on deformation and failure characteristics of complex jointed rock mass based on sand-powder 3D printing[J]. Chineses Journal of Rock and Mechanics and Engineering,2024,43(3):754−767.

[26] ZHU J B,ZHOU T,LIAO Z Y,et al. Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:198−212.

[27] 江权,宋磊博. 3D打印技术在岩体物理模型力学试验研究中的应用研究与展望[J]. 岩石力学与工程学报,2018,37(1):23−37.

JIANG Quan,SONG Leibo. Application and prospect of 3D printing technology to physical modeling in rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):23−37.

[28] 王乐华,胡永搏,付寅韬,等. 3D打印技术在岩石力学试验中的应用与展望[J]. 土木工程学报,2023,56(11):137−154.

WANG Lehua,HU Yongbo,FU Yintao,et al. Application and prospect of 3D printing technology in rock mechanics experiment[J]. China Civil Engineering Journal,2023,56(11):137−154.

[29] 任建喜,葛修润,杨更社. 单轴压缩岩石损伤扩展细观机理CT实时试验[J]. 岩土力学,2001,22(2):130−133.

REN Jianxi,GE Xiurun,YANG Gengshe. CT Real-time testing on damage propagation microscopic mechanism of rock under uniaxial compression[J]. Rock and Soil Mechanics,2001,22(2):130−133.

[30] 丁卫华,仵彦卿,蒲毅彬,等. 基于X射线CT的岩石内部裂纹宽度测量[J]. 岩石力学与工程学报,2003,22(9):1421−1425.

DING Weihua,WU Yanqing,PU Yibin,et al. Measurement of crack width in rock interior based on X-ray CT[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(9):1421−1425.

[31] 文虎,樊世星,马砺,等. 煤岩损伤研究的CT扫描技术发展现状及展望[J]. 煤炭科学技术,2019,47(1):44−51.

WEN Hu,FAN Shixing,MA Li,et al. CT Scanning Technology on coal-rock damage:A comprehensive review[J]. Coal Science and Technology,2019,47(1):44−51.

[32] 张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659−2671.

ZHANG Yanbo,XU Yuedong,LIU Xiangxin,et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT[J]. Rock and Soil Mechanics,2021,42(10):2659−2671.

[33] 王登科,吴岩,魏建平,等. 基于灰度共生矩阵和工业CT扫描的受载含瓦斯煤裂隙动态演化特征[J]. 工程科学学报,2023,45(1):31−43.

WANG Dengke,WU Yan,WEI Jianping,et al. Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning[J]. Chinese Journal of Engineering,2023,45(1):31−43.

[34] 王刚,秦相杰,江成浩,等. 温度作用下CT三维重建煤体微观结构的渗流和变形模拟[J]. 岩土力学,2020,41(5):1750−1760.

WANG Gang,QIN Xiangjie,JIANG Chenghao,et al. Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions[J]. Rock and Soil Mechanics,2020,41(5):1750−1760.

[35] 李兆霖,王连国,姜崇扬,等. 基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J]. 煤炭学报,2021,46(3):937−949.

LI Zhaolin,WANG Lianguo,JIANG Chongyang,et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning[J]. Journal of China Coal Society,2021,46(3):937−949.

[36] GUO Peng,LI Xiao,LI Shouding,et al. Quantitative analysis of anisotropy effect on hydrofracturing efficiency and process in shale using X-ray computed tomography and acoustic emission[J]. Rock Mechanics and Rock Engineering,2021,54(11):5715−5730.

[37] 张良,齐庆新,REN Ting,等. 基于显微CT扫描和统计强度的煤岩损伤破裂特性研究[J]. 煤炭科学技术,2023,51(增刊2):1−12.

ZHANG Liang,QI Qingxin,REN Ting,et al. Study on the damage and fracture characteristics of coal rock based on the X-ray micro-CT scanning technology and statistical strength theory[J]. Coal Science and Technology,2023,51(Sup.2):1−12.

[38] ZHANG Liang,LI Xiaopeng,QI Qingxin,et al. Cracking evolution for deep hard coal using X-ray in-situ micro-CT technology and fractal theory[C]//15th International ISRM Congress 2023,Austria:International Society for Rock Mechanics and Rock Engineering,2023:2436–2441.

[39] 于庆磊,杨天鸿,唐世斌,等. 基于CT的准脆性材料三维结构重建及应用研究[J]. 工程力学,2015,32(11):51−62.

YU Qinglei,YANG Tianhong,TANG Shibin,et al. The 3D reconstruction method for quasi-brittle material structure and application[J]. Engineering Mechanics,2015,32(11):51−62.

[40] 钟江城,王子辉,王路军,等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报,2019,44(5):1482−1494.

ZHONG Jiangcheng,WANG Zihui,WANG Lujun,et al. Characteristics of damage evolution of deep coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,2019,44(5):1482−1494.

[41] 段永婷,冯夏庭,李晓. 页岩细观矿物条带对其宏观破坏模式的影响研究[J]. 岩石力学与工程学报,2021,40(1):43−52.

DUAN Yongting,FENG Xiating,LI Xiao. Study on the influence of meso-mineral bands on macroscopic failure modes of shale[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):43−52.

[42] 陈卫忠,王鲁瑀,谭贤君,等. 裂隙岩体地下工程稳定性研究发展趋势[J]. 岩石力学与工程学报,2021,40(10):1945−1961.

CHEN Weizhong,WANG Luyu,TAN Xianjun,et al. State-of-the-art and development tendency of the underground engineering stability of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):1945−1961.

[43] MAS IVARS D,PIERCE M E,DARCEL C,et al. The synthetic rock mass approach for jointed rock mass modelling[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):219−244.

[44] ESMAIELI K,HADJIGEORGIOU J,GRENON M. Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(6):915−926.

[45] 吴顺川,高艳华,高永涛,等. 等效节理岩体表征单元体研究[J]. 中国矿业大学学报,2014,43(6):1120−1126.

WU Shunchuan,GAO Yanhua,GAO Yongtao,et al. Research on representative elemental volume of equivalent joint rock mass[J]. Journal of China University of Mining & Technology,2014,43(6):1120−1126.

[46] 李博,梁秦源,周宇,等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究[J]. 岩石力学与工程学报,2022,41(6):1114−1125.

LI Bo,LIANG Qinyuan,ZHOU Yu,et al. Research on crack propagation law of granite based on CT-GBM reconstruction method[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1114−1125.

[47] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报,2007,26(6):1081−1106.

SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1081−1106.

[48] NICKSIAR M,MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics and Rock Engineering,2012,45(4):607−617.

[49] 赵奎,冉珊瑚,曾鹏,等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学,2021,42(4):899−908.

ZHAO Kui,RAN Shanhu,ZENG Peng,et al. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone[J]. Rock and Soil Mechanics,2021,42(4):899−908.

[50] 李存宝,谢和平,谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报,2017,42(4):969−976.

LI Cunbao,XIE Heping,XIE Lingzhi. Experimental and theoretical study on the shale crack initiation stress and crack damage stress[J]. Journal of China Coal Society,2017,42(4):969−976.

[51] CHEN Yan,GUO Wenbing,ZUO Jianping,et al. Effect of triaxial loading and unloading on crack propagation and damage behaviors of sandstone:An experimental study[J]. Rock Mechanics and Rock Engineering,2021,54(12):6077−6090.

[52] 王军保,刘新荣,宋战平,等. 基于反S函数的盐岩单轴压缩全过程蠕变模型[J]. 岩石力学与工程学报,2018,37(11):2446−2459.

WANG Junbao,LIU Xinrong,SONG Zhanping,et al. A whole process creeping model of salt rock under uniaxial compression based on inverse S function[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2446−2459.

[53] 刘新喜,李盛南,周炎明,等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报,2020,39(1):138−146.

LIU Xinxi,LI Shengnan,ZHOU Yanming,et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):138−146.

[54] 赵伦洋,赖远明,牛富俊,等. 硬脆性岩石多尺度损伤蠕变模型及长期强度研究[J]. 中南大学学报(自然科学版),2022,53(8):3071−3080.

ZHAO Lunyang,LAI Yuanming,NIU Fujun,et al. Multi-scale damage creep model and long-term strength for hard brittle rocks[J]. Journal of Central South University (Science and Technology),2022,53(8):3071−3080.

[55] 王青元,朱万成,刘洪磊,等. 单轴压缩下绿砂岩长期强度的尺寸效应研究[J]. 岩土力学,2016,37(4):981−990.

WANG Qingyuan,ZHU Wancheng,LIU Honglei,et al. Size effect of long-term strength of sandstone under uniaxial compression[J]. Rock and Soil Mechanics,2016,37(4):981−990.

[56] RASSOULI F S,ZOBACK M D. Comparison of short-term and long-term creep experiments in shales and carbonates from unconventional gas reservoirs[J]. Rock Mechanics and Rock Engineering,2018,51(7):1995−2014.

[57] 陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报,1982,1(1):1−20.

TAN Tjongkie. The mechanical problems for the long-term stability of underground galleries[J]. Chinese Journal of Rock Mechanics and Engineering,1982,1(1):1−20.

[58] 曹树刚,边金,李鹏. 岩石蠕变本构关系及改进的西原正夫模型[J]. 岩石力学与工程学报,2002,21(5):632−634.

CAO Shugang,BIAN Jin,LI Peng. Rheologic constitutive relationship of rocks and a modifical model[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(5):632−634.

[59] 王来贵,何峰,刘向峰,等. 岩石试件非线性蠕变模型及其稳定性分析[J]. 岩石力学与工程学报,2004,23(10):1640−1642.

WANG Laigui,HE Feng,LIU Xiangfeng,et al. Non-linear creep model and stability analysis of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(10):1640−1642.

[60] 张向东,李永靖,张树光,等. 软岩蠕变理论及其工程应用[J]. 岩石力学与工程学报,2004,23(10):1635−1639.

ZHANG Xiangdong,LI Yongjing,ZHANG Shuguang,et al. Creep theory of soft rock and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(10):1635−1639.

[61] 徐卫亚,杨圣奇,褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩石力学与工程学报,2006,25(3):433−447.

XU Weiya,YANG Shengqi,CHU Weijiang. Nonlinear viscoelasto-plastic rheological model (Hohai model) of rock and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(3):433−447.

[62] 袁海平,曹平,许万忠,等. 岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J]. 岩土工程学报,2006,28(6):796−799.

YUAN Haiping,CAO Ping,XU Wanzhong,et al. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model[J]. Chinese Journal of Geotechnical Engineering,2006,28(6):796−799.

[63] 吴斐,谢和平,刘建锋,等. 分数阶黏弹塑性蠕变模型试验研究[J]. 岩石力学与工程学报,2014,33(5):964−970.

WU Fei,XIE Heping,LIU Jianfeng,et al. Experimental study of fractional viscoelastic-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(5):964−970.

[64] 刘泉声,罗慈友,彭星新,等. 软岩现场流变试验及非线性分数阶蠕变模型[J]. 煤炭学报,2020,45(4):1348−1356.

LIU Quansheng,LUO Ciyou,PENG Xingxin,et al. Research on field rheological test and nonlinear fractional derivative creep model of weak rock mass[J]. Journal of China Coal Society,2020,45(4):1348−1356.

[65] 张强勇,杨文东,张建国,等. 变参数蠕变损伤本构模型及其工程应用[J]. 岩石力学与工程学报,2009,28(4):732−739.

ZHANG Qiangyong,YANG Wendong,ZHANG Jianguo,et al. Variable parameters-based creep damage constitutive model and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(4):732−739.

[66] 赵延林,唐劲舟,付成成,等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报,2016,35(7):1297−1308.

ZHAO Yanlin,TANG Jinzhou,FU Chengcheng,et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1297−1308.

[67] HOU Rongbin,ZHANG Kai,TAO Jing,et al. A nonlinear creep damage coupled model for rock considering the effect of initial damage[J]. Rock Mechanics and Rock Engineering,2019,52(5):1275−1285.

[68] 李晓照,班力壬,戚承志. 高渗透压脆性岩石蠕变宏–细观力学模型研究[J]. 岩土力学,2020,41(12):3987−3995.

LI Xiaozhao,BAN Liren,QI Chengzhi. Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks[J]. Rock and Soil Mechanics,2020,41(12):3987−3995.

[69] 程爱平,付子祥,刘立顺,等. 胶结充填体蠕变硬化–损伤特征及非线性本构模型[J]. 采矿与安全工程学报,2022,39(3):449−457.

CHENG Aiping,FU Zixiang,LIU Lishun,et al. Creep hardening-damage characteristics and nonlinear constitutive model of cemented backfill[J]. Journal of Mining & Safety Engineering,2022,39(3):449−457.

[70] 夏才初,金磊,郭锐. 参数非线性理论流变力学模型研究进展及存在的问题[J]. 岩石力学与工程学报,2011,30(3):454−463.

XIA Caichu,JIN Lei,GUO Rui. Nonlinear theoretical rheological model for rock:A review and some problems[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(3):454−463.

[71] 谭云亮,范德源,刘学生,等. 煤矿深部超大断面硐室群围岩连锁失稳控制研究进展[J]. 煤炭学报,2022,47(1):180−199.

TAN Yunliang,FAN Deyuan,LIU Xuesheng,et al. Research progress on chain instability control of surrounding rock for super-large section chamber group in deep coal mines[J]. Journal of China Coal Society,2022,47(1):180−199.

[72] 孙金山,陈明,姜清辉,等. 锦屏大理岩蠕变损伤演化细观力学特征的数值模拟研究[J]. 岩土力学,2013,34(12):3601−3608.

SUN Jinshan,CHEN Ming,JIANG Qinghui,et al. Numerical simulation of mesomechanical characteristics of creep demage evolution for Jingping marble[J]. Rock and Soil Mechanics,2013,34(12):3601−3608.

[73] 何峰,王来贵,赵娜,等. 煤岩蠕变破裂判定准则及应用[J]. 煤炭学报,2011,36(1):39−42.

HE Feng,WANG Laigui,ZHAO Na,et al. Criteria for coal creep rupture and its application[J]. Journal of China Coal Society,2011,36(1):39−42.

[74] 赵娜,张怡斌,王来贵. 砂岩蠕变破裂多尺度演化试验研究[J]. 应用力学学报,2023,40(1):87−95.

ZHAO Na,ZHANG Yibin,WANG Laigui. Experimental study on multi-scale creep rupture evolution of sandstone[J]. Chinese Journal of Applied Mechanics,2023,40(1):87−95.

[75] JING Hongwen,YIN Qian,YANG Shengqi,et al. Micro-mesoscopic creep damage evolution and failure mechanism of sandy mudstone[J]. International Journal of Geomechanics,2021,21(3):04021010.

[76] XUE Yanchao,XU Tao,ZHU Wancheng,et al. Full-field quantification of time-dependent and-independent deformation and fracturing of double-Notch flawed rock using digital image correlation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2021,7(4):100.

[77] 孙长伦,李桂臣,许嘉徽,等. 砂岩矿物组分流变特性纳米压痕实验研究[J]. 岩石力学与工程学报,2021,40(1):77−87.

SUN Changlun,LI Guichen,XU Jiahui,et al. Rheological characteristics of mineral components in sandstone based on nanoindentation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):77−87.

[78] HUANG Peng,ZHANG Jixiong,SPEARING A J S,et al. Experimental study of the creep properties of coal considering initial damage[J]. International Journal of Rock Mechanics and Mining Sciences,2021,139:104629.

[79] ZHANG Liang,LI Xiangchun,REN Ting. A theoretical and experimental study of stress–strain,creep and failure mechanisms of intact coal[J]. Rock Mechanics and Rock Engineering,2020,53(12):5641−565.

[80] 杨超,许轩,王乐华,等. 不同特征应力区间单裂隙砂岩与完整岩石蠕变特性的相关关系[J]. 岩石力学与工程学报,2022,41(7):1347−1357.

YANG Chao,XU Xuan,WANG Lehua,et al. Relationship between creep characteristics of intact rock and single-flawed sandstone under different critical stress intervals[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(7):1347−1357.

[81] 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846−866.

LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846−866.

[82] 高延法. 岩石流变及其扰动效应试验研究[M]. 北京:科学出版社,2007.

[83] 黄万朋,孙远翔,陈绍杰. 岩石蠕变扰动效应理论及其在深地动压工程支护中的应用[J]. 岩土工程学报,2021,43(9):1621−1630.

HUANG Wanpeng,SUN Yuanxiang,CHEN Shaojie. Theory of creep disturbance effect of rock and its application in support of deep dynamic engineering[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1621−1630.

[84] ZHU Wancheng,LI Shaohua,LI Shuai,et al. Influence of dynamic disturbance on the creep of sandstone:An experimental study[J]. Rock Mechanics and Rock Engineering,2019,52(4):1023−1039.

[85] 王波,刘重阳,陈学习,等. 蠕变扰动效应下红砂岩强度极限邻域试验研究[J]. 煤炭科学技术,2021,49(9):54−60.

WANG Bo,LIU Chongyang,CHEN Xuexi,et al. Experimental study on range of strength limit neighborhood of red sandstone under effect of creep disturbance[J]. Coal Science and Technology,2021,49(9):54−60.

[86] 王俊光,梁冰,杨鹏锦. 动静载荷作用下片麻岩蠕变实验及非线性扰动蠕变模型[J]. 煤炭学报,2019,44(1):192−198.

WANG Junguang,LIANG Bing,YANG Pengjin. Creep experiment and nonlinear disturbance creep model of gneiss under dynamic and static loads[J]. Journal of China Coal Society,2019,44(1):192−198.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.