Coal Geology & Exploration
Abstract
Objective Underground spatial surveying of coal mine is an important part of transparent geological modelling for coal mine. However, the complex environment of coal mine roadway, incomplete information acquisition, insufficient accuracy of sensed data and other difficulties need to be urgently solved. Methods First, the signal characteristics of millimeter wave radar under the complex environmental factors such as dust, water mist, surrounding rock structure, etc. were studied in depth, the millimeter wave signal attenuation model was established for the surrounding rock of coal mine roadway, and the influence mechanism of complex environmental factors for millimeter wave radar was comparatively analyzed. Second, in view of the problem of millimeter wave radar based digital roadway modelling in the complex environment of coal mine, the Poisson surface reconstruction method based on millimeter wave radar point cloud for the roadway space was proposed. Through experimental tests and simulated roadway environment verification, the spatial surveying and digital modelling reconstruction of the coal mine roadway was achieved on the basis of revealing the millimetre-wave radar sensing mechanism under the complex environmental conditions of the coal mine. Results and Conclusions The results show that: (1) The millimetre-wave radar could adapt to the underground coal mine roadway environment with a lot of dust, water mist and rough surrounding rock, and provide effective data for the spatial reconstruction of the coal mine roadway. (2) The Poisson surface reconstruction method could fully display the real information on surrounding rock of roadway, and the average absolute error percentage is 0.59% for the reconstructed total roadway width, and 0.78% for the total roadway height. Generally, the study of millimeter-wave radar spatial surveying characteristics and reconstruction methods in the complex environment of coal mines provides the spatial surveying data of roadway for transparent geological modelling of coal mines, which is of great significance in promoting the intelligent mining of coal mines.
Keywords
millimetre-wave radar, complex environment, roadway modelling, space surveys, coal mine
DOI
10.12363/issn.1001-1986.24.05.0347
Recommended Citation
XUE Xusheng, YANG Xingyun, YUE Jianing,
et al.
(2024)
"Spatial surveying characteristics and reconstruction method of millimetre wave radar in complex environment of coal mine roadway,"
Coal Geology & Exploration: Vol. 52:
Iss.
10, Article 18.
DOI: 10.12363/issn.1001-1986.24.05.0347
Available at:
https://cge.researchcommons.org/journal/vol52/iss10/18
Reference
[1] 王国法,任怀伟,马宏伟,等. 煤矿智能化基础理论体系研究[J]. 智能矿山,2023,4(2):2−8.
WANG Guofa,REN Huaiwei,MA Hongwei,et al. Research on basic theoretical system of coal mine intelligentization[J]. Journal of Intelligent Mine,2023,4(2):2−8.
[2] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34−53.
WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34−53.
[3] 董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15−23.
DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15−23.
[4] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109−117.
WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109−117.
[5] 菅洁,谢建林,郭勇义. 煤矿井下粉尘浓度与粉尘粒度测定分析[J]. 太原理工大学学报,2017,48(4):592−597.
JIAN Jie,XIE Jianlin,GUO Yongyi. Analysis of coal mine dust concentration and particle size[J]. Journal of Taiyuan University of Technology,2017,48(4):592−597.
[6] 梁运涛,田富超,冯文彬,等. 我国煤矿气体检测技术研究进展[J]. 煤炭学报,2021,46(6):1701−1714.
LIANG Yuntao,TIAN Fuchao,FENG Wenbin,et al. Research progress of coal mine gas detection technology in China[J]. Journal of China Coal Society,2021,46(6):1701−1714.
[7] 胡兴涛,朱涛,苏继敏,等. 煤矿巷道智能化掘进感知关键技术[J]. 煤炭学报,2021,46(7):2123−2135.
HU Xingtao,ZHU Tao,SU Jimin,et al. Key technology of intelligent drivage perception in coal mine roadway[J]. Journal of China Coal Society,2021,46(7):2123−2135.
[8] 陈先中,刘荣杰,张森,等. 煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J]. 煤炭学报,2020,45(6):2182−2192.
CHEN Xianzhong,LIU Rongjie,ZHANG Sen,et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society,2020,45(6):2182−2192.
[9] 蒋俊林,陈昶昊,姚志强,等. 烟雾环境下单通道毫米波雷达建图算法研究[C]//2022中国自动化大会论文集. 厦门,2022:153–158.
[10] 詹军,董学才,洪峰,等. 智能汽车传感器实时功能模型及验证[J]. 汽车工程,2019,41(7):731−737.
ZHAN Jun,DONG Xuecai,HONG Feng,et al. Real-time functional model and verification of intelligent vehicle sensors[J]. Automotive Engineering,2019,41(7):731−737.
[11] ZANG Shizhe,DING Ming,SMITH D,et al. The impact of adverse weather conditions on autonomous vehicles:How rain,snow,fog,and hail affect the performance of a self-driving car[J]. IEEE Vehicular Technology Magazine,2019,14(2):103−111.
[12] ROUVEURE R,FAURE P,MONOD M O. Description and experimental results of a panoramic K-band radar dedicated to perception in mobile robotics applications[J]. Journal of Field Robotics,2018,35(5):678−704.
[13] ADAMS M,JOSE E. Millimeter wave RADAR power-range spectra interpretation for multiple feature detection[M]//Autonomous mobile robots. Boca Raton:CRC Press,2018:41–98.
[14] CHENG Ruichang,LIANG Xingdong,ZHANG Fubo,et al. Multipath scattering of typical structures in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):342−351.
[15] CHENG Ruichang,LIANG Xingdong,ZHANG Fubo,et al. Multiple-bounce modeling of high-rise buildings with airborne tomography array[C]//2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). Toyama,Japan. IEEE,2018:791–796.
[16] LI Xiaowan,ZHANG Fubo,LIANG Xingdong,et al. Fourfold bounce scattering-based reconstruction of building backs using airborne array TomoSAR point clouds[J]. Remote Sensing,2022,14(8):1937.
[17] 吴旭,卢凌雯,梁栋栋,等. 基于点云数据的曲面重建算法比较研究[J]. 安徽师范大学学报(自然科学版),2019,42(1):46−50.
WU Xu,LU Lingwen,LIANG Dongdong,et al. Comparison of surface reconstruction algorithms based on point cloud data[J]. Journal of Anhui Normal University (Natural Science),2019,42(1):46−50.
[18] 石育,王斌,陈超,等. 基于视觉SLAM的可交互虚拟车间构建方法[J]. 机械设计,2022,39(5):1−9.
SHI Yu,WANG Bin,CHEN Chao,et al. Research on construction method of the interactive virtual workshop based on visual SLAM[J]. Journal of Machine Design,2022,39(5):1−9.
[19] FORSYTH D. Computer vision:A modern approach[J]. Prentice Hall Professional Technical Reference,2002,14(1):294−299.
[20] KAZHDAN M,HOPPE H. Screened Poisson surface reconstruction[J]. ACM Transactions on Graphics,2013,32(3):1−13.
[21] 佟卓键,桂进斌,胡磊,等. 用于全息三维显示的数据获取方法进展[J]. 激光与光电子学进展,2024,61(10):101−111.
TONG Zhuojian,GUI Jinbin,HU Lei,et al. Progress on data acquisition methods for holographic 3D display[J]. Laser & Optoelectronics Progress,2024,61(10):101−111.
[22] 陈玉涛. 煤矿胶带运输巷道综合降尘技术[J]. 西安科技大学学报,2024,44(4):796–804.
CHEN Yutao. Comprehensive dust reduction technology of coal mine belt transport tunnel[J]. Journal of Xi’an University of Science and Technology,2024,44(4):796–804.
[23] 秦波涛,周刚,周群,等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报,2021,46(12):3891−3901.
QIN Botao,ZHOU Gang,ZHOU Qun,et al. Dust removal system and application of the surfactant-magnetized water spray in the fully mechanized mining face of coal mines[J]. Journal of China Coal Society,2021,46(12):3891−3901.
[24] 于晴,侯庆文,陈先中. 高炉浓尘环境料面散射特性建模与成像[J]. 系统工程与电子技术,2023,45(5):1277−1285.
YU Qing,HOU Qingwen,CHEN Xianzhong. Scattering characteristics modeling and imaging of blast furnace burden surface in dusty environment[J]. Systems Engineering and Electronics,2023,45(5):1277−1285.
[25] 易超,张清河,刘广旭,等. 基于卷积神经网络的色散介质电磁参数重构[J]. 微波学报,2021,37(2):70−75.
YI Chao,ZHANG Qinghe,LIU Guangxu,et al. Reconstruction of electromagnetic parameters of dispersive media based on convolutional neural network[J]. Journal of Microwaves,2021,37(2):70−75.
[26] 邹梦凡,何晓雨. 自动驾驶雷达频段降雨环境散射特性建模分析[J]. 系统仿真学报,2023,35(10):2161−2169.
ZOU Mengfan,HE Xiaoyu. Modeling and analysis on scattering characteristics automatic driving radar bands in rainy environment[J]. Journal of System Simulation,2023,35(10):2161−2169.
[27] 郭婧,张合,赵学健. 降雨对激光定距系统后向散射特性的影响[J]. 光子学报,2014,43(11):90−94.
GUO Jing,ZHANG He,ZHAO Xuejian. Study on backscattering characteristics of laser ranging system in the rain[J]. Acta Photonica Sinica,2014,43(11):90−94.
[28] 姚善化. 复杂矿井巷道中电磁波传播特性及相关技术研究[D]. 合肥:安徽大学,2010.
YAO Shanhua. Study on characteristic of electromagnetic waves propagation and key technology in complicated coal mine tunnels[D]. Hefei:Anhui University,2010.
[29] 王可欣,金映含,张东亮. 基于深度相机的虚拟眼镜试戴[J]. 图学学报,2023,44(5):988−996.
WANG Kexin,JIN Yinghan,ZHANG Dongliang. Virtual glasses try-on using a depth camera[J]. Journal of Graphics,2023,44(5):988−996.
[30] 鲁猛胜,姚剑,董赛云. 法向约束的点云数据泊松表面重建算法[J]. 测绘地理信息,2022,47(4):51−55.
LU Mengsheng,YAO Jian,DONG Saiyun. The Poisson surface reconstruction algorithm for normal constraint’s for point cloud data[J]. Journal of Geomatics,2022,47(4):51−55.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons