Coal Geology & Exploration
Abstract
Objective PDC bits are critical components of geological support equipment and play a vital role in advancing technology and improving efficiency in the coal industry. Currently, PDC bits are brazed using silver filler metals containing cadmium, a toxic and polluting element. This study introduces the use of environmentally friendly, cadmium-free filler metals for brazing PDC bits. Methods The study investigates the wetting mechanism between brazing filler metals and base materials, utilizing Ag-Cu-Zn series brazing filler metals containing high silver and Sn, Mn and Ni, and only Ni for flame brazing of PDC cutters and steel. The shear strength of different brazing solders and the performance of PDC cutters post-welding were analyzed. Microstructure, element content, and Raman spectra of PDC cutters with the highest melting temperature were examined pre- and post-brazing to assess potential thermal damage. Interface morphology, element diffusion, section features, and phase composition of brazing joints were analyzed to elucidate the formation mechanism of cadmium-free Ag-Cu-Zn series filler metal joints. Additionally, the wetting angle and chemical affinity parameters of the filler metal and interfaces were measured and calculated to comprehensively evaluate brazing performance. Results and Conclusions The results indicate that: (1) All four cadmium-free Ag-Cu-Zn brazing alloys satisfy the strength requirements for PDC cutter brazing, with Ag-Cu-Zn brazing alloys containing Mn and Ni achieving a strength of 322.989 MPa. (2) The brazing mechanism of Ag-Cu-Zn solder containing Sn involves micro-diffusion of elements at the interface. For brazing joints containing Mn and Ni or only Ni, the formation mechanism involves creating a reaction layer at the interface, which increases bonding strength. (3) The fracture morphology of Ag-Cu-Zn series brazing metal containing 3% Sn, Mn and Ni, and only Ni is ductile fracture, while the Ag-Cu-Zn series brazing alloy containing 5% Sn exhibits a brittle-ductile mixed fracture. (4) Mn reduces the tension between the Cu-rich phase and the base metal on both sides of the interface, whereas Ni only reduces the tension at the steel interface. Consequently, cadmium-free Ag-Cu-Zn brazing joints containing Mn and Ni have the highest strength. These findings provide theoretical and experimental support for the engineering application of environmentally friendly cadmium-free brazing filler metals in PDC bit brazing, promoting a transition towards more sustainable and advanced brazing technologies.
Keywords
cadmium-free filler metal, PDC cutters, mechanical properties, microstructure, chemical affinity
DOI
10.12363/issn.1001-1986.24.04.0266
Recommended Citation
ZHANG Suhui, YAO Ningping, LIU Qingxiu,
et al.
(2024)
"Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters,"
Coal Geology & Exploration: Vol. 52:
Iss.
10, Article 17.
DOI: 10.12363/issn.1001-1986.24.04.0266
Available at:
https://cge.researchcommons.org/journal/vol52/iss10/17
Reference
[1] 李再久,田娟娟,朱绍武,等. AgCuZnNi合金铸态组织及凝固路径分析[J]. 贵金属,2016,37(3):6−10.
LI Zaijiu,TIAN Juanjuan,ZHU Shaowu,et al. The study on microstructure and solidification path of AgCuZnNi brazing alloy[J]. Precious Metals,2016,37(3):6−10.
[2] 王晓飞,金程凯,方运琪,等. 微合金化低银无镉Ag-Cu-Zn钎料的性能[J]. 机械工程材料,2021,45(12):49−54.
WANG Xiaofei,JIN Chengkai,FANG Yunqi,et al. Properties of microalloying low-silver and cadmium-free Ag-Cu-Zn brazing filler metal[J]. Materials for Mechanical Engineering,2021,45(12):49−54.
[3] 王星星,彭进,薛鹏,等. AgCuZnSn钎料制备方法及合金化的研究进展[J]. 材料导报,2017,31(15):87−94.
WANG Xingxing,PENG Jin,XUE Peng,et al. Progress in manufacturing and alloying of AgCuZnSn brazing filler metals[J]. Materials Review,2017,31(15):87−94.
[4] 李慧芳. 钛/钢感应钎焊的AgCuZnNi钎料的研制及工艺性研究[D]. 兰州:兰州理工大学,2013.
LI Huifang. Research on Ag45CuZn3. 5Ni brazing filler metal and technics for high-frequency induction brazing of TC4 Tianium alloy and 304 Stainless steel[D]. Lanzhou:Lanzhou University of Technology,2013.
[5] 彭宇涛. 微合金化对Ag-Cu-Zn系低银无镉钎料组织及性能的影响[D]. 杭州:中国计量大学,2020.
PENG Yutao. Effects of microalloying on microstructure and properties of low silver & Cd-free Ag-Cu-Zn filler metal[D]. Hangzhou:China University of Metrology,2020.
[6] XUE Peng,ZOU Yang,HE Peng,et al. Development of low silver AgCuZnSn filler metal for Cu/steel dissimilar metal joining[J]. Metals,2019,9(2):198.
[7] CAO J,ZHANG L X,WANG H Q,et al. Effect of silver content on microstructure and properties of brass/steel induction brazing joint using Ag-Cu-Zn-Sn filler metal[J]. Journal of Materials Science & Technology,2011,27(4):377−381.
[8] 陈永泰,谢明,杨有才,等. AgCuZnNi合金的显微组织与性能研究[J]. 贵金属,2015,36(3):49−54.
CHEN Yongtai,XIE Ming,YANG Youcai,et al. Research on microstructure and properties of AgCuZnNi alloy[J]. Precious Metals,2015,36(3):49−54.
[9] KARPIŃSKI M. Microstructure of a joint of sintered carbides and steel brazed with Ag-Cu-Zn-Mn-Ni filler metal[J]. Materiali in Tehnologije,2020,54(4):485−488.
[10] MU Guoqian,QU Wenqing,ZHANG Yanhua,et al. Effect of Ni on the wetting and brazing characterization of 304 stainless steel by Ag–Cu alloy[J]. Journal of Materials Science,2023,58(14):6297−6312.
[11] 卢绍平,杨红梅,杨富陶,等. Zn对AgCuNi4-0.5合金性能的影响[J]. 贵金属,2013,34(1):21−24.
LU Shaoping,YANG Hongmei,YANG Futao,et al. The effect of Zn on the properties of AgCuNi4-0.5 alloy[J]. Precious Metals,2013,34(1):21−24.
[12] 杜全斌,张黎燕,龙伟民,等. Ni、Mn元素对AgCuZn钎料润湿特性的影响[J]. 热加工工艺,2021,50(15):141−144.
DU Quanbin,ZHANG Liyan,LONG Weimin,et al. Effects of Ni,Mn elements on wettability of AgCuZn brazing filler metals[J]. Hot Working Technology,2021,50(15):141−144.
[13] 马超力,薛松柏,张涛,等. 铟对低银Ag-Cu-Zn钎料显微组织和性能的影响[J]. 稀有金属材料与工程,2017,46(9):2565−2570.
MA Chaoli,XUE Songbai,ZHANG Tao,et al. Influences of in on the microstructure and mechanical properties of low silver Ag-Cu-Zn filler metal[J]. Rare Metal Materials and Engineering,2017,46(9):2565−2570.
[14] SHI Xin,LI Yuanxing,BAI Yujie,et al. Effect of Ni in pure Cu/304 stainless steel induction brazing joints[J]. Materials Characterization,2021,182:111562.
[15] MA Chaoli,XUE Songbai,WANG Bo,et al. Effects of Ga and Ce on the microstructure and properties of cadmium-free silver filler metals[J]. Rare Metal Materials and Engineering,2019,48(1):91−96.
[16] ZHU Weiwei,ZHANG He,GUO Chaohui,et al. Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag–Cu filler[J]. Vacuum,2019,166:97−106.
[17] WU Jie,XUE Songbai,ZHANG Peng. Effect of in and Pr on the microstructure and properties of low-silver filler metal[J]. Crystals,2021,11(8):929.
[18] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 钎料润湿性试验方法:GB/T 11364—2008[S]. 北京:中国标准出版社,2008.
[19] 工业和信息化部. 聚晶金刚石磨耗比测定方法:JB/T 3235—2013[S]. 北京:机械工业出版社,2013.
[20] 国家安全生产监督管理总局. 金刚石复合片不取心钻头:MT/T 786—2011[S]. 北京:煤炭工业出版社,2011.
[21] 贠东海. 锡和镓对银基钎料组织及性能的影响[D]. 郑州:郑州大学,2014.
YUN Donghai. Influence of tin and gallium on microstructure and properties of Ag-Cu-Zn brazing filler metal[D]. Zhengzhou:Zhengzhou University,2014.
[22] 彭宇涛,李佳航,李子坚,等. 低银无镉Ag-Cu-Zn钎料的合金化改性[J]. 材料热处理学报,2020,41(2):166−172.
PENG Yutao,LI Jiahang,LI Zijian,et al. Alloying modification of low silver and cadmium-free Ag-Cu-Zn solder[J]. Transactions of Materials and Heat Treatment,2020,41(2):166−172.
[23] OLSON D L,SIEWERT T A,LIU S,et al. ASM Handbook Volume 6:Welding,Brazing and Soldering[M]. ASM International,1993.
[24] 陈念贻. 键参数函数及其应用(一):金属键的形成条件[J]. 中国科学,1974,4(6):580−584.
CHEN Nianyi. Bond parameter function and its application (I):Forming conditions of metal bond[J]. Science in China,1974,4(6):580−584.
[25] WHALEN T J,HUMENIK M. Surface tension and contact angles of copper-nickel alloys on titanium carbide[J]. Transactions of the Metallurgical Society of ALME,1960,218:952−956.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons