•  
  •  
 

Coal Geology & Exploration

Abstract

Objective The bedding plane location significantly impacts the dynamic failure processes and mechanical properties of coal-rock composites, but the specific influence patterns remain unclear. Methods Dynamic mechanical tests were conducted on coal-rock composite specimens with bedding planes located at the top, middle, and bottom using the split Hopkinson pressure bar (SHPB). The investigation focused on the dynamic stress-strain behavior, failure process, energy distribution, and fragmentation characteristics under impact loading conditions. Results and Conclusions The findings indicate that: (1) The dynamic stress-strain behavior of coal-rock composites can be segmented into five distinct stages: near-linear stage, nonlinear dynamic stress-strain stage, elastic modulus reduction stage, macroscopic rupture stage, and stress wave unloading stage. (2) As the bedding plane location transitions from top to bottom, the extent of rock damage increases, the failure process becomes more pronounced, and the uniformity of post-failure fragments decreases. Conversely, the coal component exhibits a reduction in damage severity and an increase in fragment size after failure. (3) The presence of a bedding plane significantly reduces the dynamic compressive strength of coal-rock composites. Compared to composites without a bedding plane (average strength: 79.487 MPa), the dynamic compressive strength decreases by 7.25% (average strength: 73.724 MPa) when the bedding plane is at the top, by 22.26% (average strength: 61.798 MPa) when at the middle, and by 18.24% (average strength: 64.991 MPa) when at the bottom. (4) The energy distribution changes as the bedding plane location shifts from top to bottom, with a reduction in reflected energy, an increase in absorbed energy, and a decrease in transmitted energy. These results provide valuable insights for optimizing fracturing positions in large-scale hard roof treatment using ultra-long hole hydraulic fracturing or surface fracturing techniques.

Keywords

bedding plane location, coal-rock combinations, dynamic mechanical properties, split Hopkinson pressure bar(SHPB), energy structure, hydraulic fracturing

DOI

10.12363/issn.1001-1986.24.04.0253

Reference

[1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.

XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.

[2] 康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021,23(5):130−138.

KANG Hongpu,WANG Guofa,WANG Shuangming,et al. High-quality development of China’s coal industry[J]. Strategic Study of CAE,2021,23(5):130−138.

[3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

[4] 陈岩,左建平,宋洪强,等. 煤岩组合体循环加卸载变形及裂纹演化规律研究[J]. 采矿与安全工程学报,2018,35(4):826−833.

CHEN Yan,ZUO Jianping,SONG Hongqiang,et al. Deformation and crack evolution of coal-rock combined body under cyclic loading-unloading effects[J]. Journal of Mining & Safety Engineering,2018,35(4):826−833.

[5] 秦忠诚,陈光波,秦琼杰. 组合方式对煤岩组合体力学特性和冲击倾向性影响实验研究[J]. 西安科技大学学报,2017,37(5):655−661.

QIN Zhongcheng,CHEN Guangbo,QIN Qiongjie. Effects of combination mode on mechanical properties and rock burst tendency of the coal-rock combinations[J]. Journal of Xi’an University of Science and Technology,2017,37(5):655−661.

[6] 郑建伟,王书文,李海涛,等. 层面数量对煤岩组合体抗压特性影响的实验研究[J]. 煤田地质与勘探,2023,51(5):11−22.

ZHENG Jianwei,WANG Shuwen,LI Haitao,et al. Experimental study on compressive strength characteristics of coal-rock combinations influenced by number of bedding surfaces[J]. Coal Geology & Exploration,2023,51(5):11−22.

[7] 李利萍,胡学锦,潘一山,等. 不同粗糙度煤岩界面超低摩擦效应与声发射特征试验研究[J]. 力学学报,2024,56(4):1047−1056.

LI Liping,HU Xuejin,PAN Yishan,et al. Experimental study on ultra-low friction effect and acoustic emission characteristics of coal-rock interface with different roughness[J]. Chinese Journal of Theoretical and Applied Mechanics,2024,56(4):1047−1056.

[8] 李怀珍,李学华,种照辉,等. 煤岩锚固系统滑移脱黏试验研究与力学性能分析[J]. 采矿与安全工程学报,2017,34(6):1088−1093.

LI Huaizhen,LI Xuehua,CHONG Zhaohui,et al. Experimental research on slippage mode and analysis on mechanical properties of coal rock anchorage system[J]. Journal of Mining & Safety Engineering,2017,34(6):1088−1093.

[9] GONG Fengqiang,YE Hao,LUO Yong. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body[J]. Shock and Vibration,2018,2018:4374530.

[10] MA Cong,ZHU Chuanjie,ZHOU Jingxuan,et al. Dynamic response and failure characteristics of combined rocks under confining pressure[J]. Scientific Reports,2022,12(1):12187.

[11] LI Feng,SUN Runchuan,ZHANG Yue,et al. Dynamic response characteristics and damage evolution of multi-layer combined coal and rock mass under impact loading[J]. Sustainability,2022,14(15):9175.

[12] 杨科,刘文杰,马衍坤,等. 真三轴单面临空下煤岩组合体冲击破坏特征试验研究[J]. 岩土力学,2022,43(1):15−27.

YANG Ke,LIU Wenjie,MA Yankun,et al. Experimental study of impact failure characteristics of coal-rock combination bodies under true triaxial loading and single face unloading[J]. Rock and Soil Mechanics,2022,43(1):15−27.

[13] LI Chengjie,XU Ying,CHEN Peiyuan,et al. Dynamic mechanical properties and fragment fractal characteristics of fractured coal–rock-like combined bodies in split Hopkinson pressure bar tests[J]. Natural Resources Research,2020,29(5):3179−3195.

[14] 马泗洲,刘科伟,郭腾飞,等. 煤岩组合体巴西劈裂动态力学特征数值分析[J]. 高压物理学报,2022,36(5):128−140.

MA Sizhou,LIU Kewei,GUO Tengfei,et al. Numerical analysis of dynamic mechanical characteristics of Brazilian splitting of coal-rock combination bodies[J]. Chinese Journal of High Pressure Physics,2022,36(5):128−140.

[15] LI Pingfeng,HUANG Mingjian,LU Junji,et al. Dynamic failure characteristics of combination rock under different strain rates:Insights from SHPB tests[J]. Shock and Vibration,2022,2022:9285908.

[16] XIE Beijing,CHEN Dongxin,DING Hao,et al. Numerical simulation of split-Hopkinson pressure bar tests for the combined coal-rock by using the holmquist–Johnson–cook model and case analysis of outburst[J]. Advances in Civil Engineering,2020,2020:8833233.

[17] 李成杰,徐颖,叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报,2020,42(5):981−988.

LI Chengjie,XU Ying,YE Zhouyuan. Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):981−988.

[18] SUO Yunchen,LUO Ning,CHAI Yabo,et al. Experimental investigation of dynamic mechanical characteristics of inhomogeneous composite coal-sandstone combination for coalbed methane development[J]. Heliyon,2022,8(11):e11628.

[19] 苗磊刚,牛园园,石必明. 不同应变率下岩–煤–岩组合体冲击动力试验研究[J]. 振动与冲击,2019,38(17):137−143.

MIAO Leigang,NIU Yuanyuan,SHI Biming. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of Vibration and Shock,2019,38(17):137−143.

[20] LIU Wenjie,YANG Ke,DOU Litong,et al. Mechanical properties and failure modes of CRCB specimen under impact loading[J]. Scientific Reports,2022,12(1):12108.

[21] 杜锋,王凯,董香栾,等. 基于CT三维重构的煤岩组合体损伤破坏数值模拟研究[J]. 煤炭学报,2021,46(增刊1):253−262.

DU Feng,WANG Kai,DONG Xiangluan,et al. Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,2021,46(Sup.1):253−262.

[22] 陈见行,王世纪,张汉,等. 水化学条件下煤岩组合体腐蚀特征及动力特性[J]. 中国矿业大学学报,2023,52(5):952−962.

CHEN Jianhang,WANG Shiji,ZHANG Han,et al. Corrosion characteristics and dynamic properties of the coal-rock combination under hydrochemical condition[J]. Journal of China University of Mining & Technology,2023,52(5):952−962.

[23] 陈光波,李元,李谭,等. 循环水岩作用下煤岩组合体力学响应及劣化机制[J]. 工程地质学报,2024,32(1):108−119.

CHEN Guangbo,LI Yuan,LI Tan,et al. Mechanical response and deterioration mechanism of coal-rock combined body under the action of circulating water-rock[J]. Journal of Engineering Geology,2024,32(1):108−119.

[24] 付斌,周宗红,王友新,等. 不同煤岩组合体力学特性的数值模拟研究[J]. 南京理工大学学报,2016,40(4):485−492.

FU Bin,ZHOU Zonghong,WANG Youxin,et al. Numerical simulation of different combination of coal and rock sample mechanics and acoustic emission characteristics[J]. Journal of Nanjing University of Science and Technology,2016,40(4):485−492.

[25] 解北京,严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报,2019,44(2):463−472.

XIE Beijing,YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society,2019,44(2):463−472.

[26] 李夕兵. 岩石动力学基础与应用[M]. 北京:科学出版社,2014.

[27] 鞠杨,李业学,谢和平,等. 节理岩石的应力波动与能量耗散[J]. 岩石力学与工程学报,2006,25(12):2426−2434.

JU Yang,LI Yexue,XIE Heping,et al. Stress wave propagation and energy dissipation in jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(12):2426−2434.

[28] 鲜学福,谭学术. 层状岩体破坏机理[M]. 重庆:重庆大学出版社,1989.

[29] 杨仁树,李炜煜,方士正,等. 层状复合岩体冲击动力学特性试验研究[J]. 岩石力学与工程学报,2019,38(9):1747−1757.

YANG Renshu,LI Weiyu,FANG Shizheng,et al. Experimental study on impact dynamic characteristics of layered composite rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(9):1747−1757.

[30] 郑建伟. 顶板条带弱化法防治巷道冲击地压技术研究[D]. 北京:煤炭科学研究总院,2021.

ZHENG Jianwei. Research on roof striped weakening method for rockburst prevention in roadway[D]. Beijing:China Coal Research Institute,2021.

[31] 康红普,冯彦军,赵凯凯. 煤矿岩层压裂技术与装备的发展方向[J]. 采矿与岩层控制工程学报,2024,6(1):5−8.

KANG Hongpu,FENG Yanjun,ZHAO Kaikai. Development trends in hydraulic fracturing technology and equipment for strata control in underground coal mines[J]. Journal of Mining and Strata Control Engineering,2024,6(1):5−8.

[32] 于斌,高瑞,夏彬伟,等. 大空间坚硬顶板地面压裂技术与应用[J]. 煤炭学报,2021,46(3):800−811.

YU Bin,GAO Rui,XIA Binwei,et al. Ground fracturing technology and application of hard roof in large space[J]. Journal of China Coal Society,2021,46(3):800−811.

[33] 龚涛,张继,夏彬伟. 地面压裂坚硬顶板对矿山压力显现影响的实验研究[J]. 科学技术与工程,2023,23(36):15427−15439.

GONG Tao,ZHANG Ji,XIA Binwei. Experimental study on the influence of surface fracturing hard roof on strata behaviours[J]. Science Technology and Engineering,2023,23(36):15427−15439.

[34] 孙四清,李文博,张俭,等. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势[J]. 煤田地质与勘探,2022,50(8):1−15.

SUN Siqing,LI Wenbo,ZHANG Jian,et al. Research progress and development trend of staged hydraulic fracturing technology in long-borehole underground coal mine[J]. Coal Geology & Exploration,2022,50(8):1−15.

[35] 杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371−3379.

YANG Junzhe,ZHENG Kaige,WANG Zhenrong,et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society,2020,45(10):3371−3379.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.