Coal Geology & Exploration
Abstract
Hot springs with temperatures exceeding 90℃ indicate that the Reshuiwei geothermal field in Hunan Province enjoys sound geothermal geological conditions, making this geothermal field a potential favorable area for hot dry rock (HDR) exploration. To carry out a reasonable evaluation of the geothermal reservoir and prospects for exploration and exploitation of HDRs in the Reshuiwei geothermal field in the Rucheng area, this study comprehensively analyzed the deep geological structures, geochemical characteristics, geophysical characteristics including gravity, magnetic, electrical, and seismic properties, and geothermal field characteristics of the geothermal field. Furthermore, it revealed the deep thermal structures of the geothermal field from deep to shallow and explored the heat source-related mechanisms and geodynamic process for the formation of HDRs in the geothermal field. Primary results are as follows. (1) The Reshuiwei geothermal field exhibits deep reservoir temperatures ranging from 79.4 to 143.9℃, as estimated using a silica geothermometer. (2) The Zhongpeng and Yuwang granite plutons near the Reshuiwei area display average heat production rates between 7.07 and 8.44 μW/m3, which are significantly higher than the average heat production rates of the crust in the major geological units in Chinese continent. (3) The gravity and magnetic characteristics reveal relatively thin lithosphere in the Reshuiwei area. Furthermore, the interpretations of the magnetotelluric sounding and seismic wave velocities reveal that the crust hosts geobodies with high conductivity and low velocity, which coincide with deep-seated fault zones. This indicates that these faults might serve as pathways for the upward intrusion of deep thermal materials. Based on these results, this study summarized the genesis mode of HDRs in the Reshuiwei geothermal field. Specifically, the subduction and retreat of the Pacific Plate led to intensive thermal disturbances to the plate front, further resulting in the uplift of the asthenosphere and the intrusion of mantle-derived thermal materials. As a result, a relatively highly located mantle-derived heat source was formed. Granite plutons with high heat production rates and uranium deposits featuring radioactive heat production form a favorable crustal heat source. Furthermore, deep-seated faults serve as pathways for the upward intrusion of deep thermal materials while supplying heat sources for the formation of shallow HDRs. The favorable thermal source conditions and the upward intrusion of deep thermal materials along deep-seated faults jointly lead to the formation of a favorable HDR target area represented by plutons around Reshuiwei in southeastern Hunan. As inferred from the comprehensively determined geothermal gradients, the concealed and tight granite plutons with scarce fractures and burial depths ranging from 4000-6000 m in the Reshuiwei geothermal field exhibit temperatures reaching 176.8-256.6°C, serving as favorable HDRs to be explored and exploited in the near future.
Keywords
hot dry rock, geochemistry, gravity, magnetic, electricity and seismic combination, heat source-related mechanism, genesis mode, Reshuiwei in Hunan
DOI
10.12363/issn.1001-1986.23.10.0631
Recommended Citation
DU Jiang, CAI Ningbo, ZHANG Baojian,
et al.
(2024)
"Heat source-related mechanisms and genetic modes for the formation of hot dry rocks in the Reshuiwei geothermal field, Hunan Province,"
Coal Geology & Exploration: Vol. 52:
Iss.
1, Article 8.
DOI: 10.12363/issn.1001-1986.23.10.0631
Available at:
https://cge.researchcommons.org/journal/vol52/iss1/8
Reference
[1] 张保建,雷玉德,赵振,等. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘,2023,30(5):384−401.
ZHANG Baojian,LEI Yude,ZHAO Zhen,et al. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin[J]. Earth Science Frontiers,2023,30(5):384−401.
[2] 张英,冯建赟,罗军,等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘,2020,27(1):35−47.
ZHANG Ying,FENG Jianyun,LUO Jun,et al. Screening of hot dry rock in the south–central part of the Bohai Bay Basin[J]. Earth Science Frontiers,2020,27(1):35−47.
[3] 毛翔,国殿斌,罗璐,等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评,2019,65(6):1462−1472.
MAO Xiang,GUO Dianbin,LUO Lu,et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review,2019,65(6):1462−1472.
[4] 甘浩男,王贵玲,蔺文静,等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报,2015,33(19):22−27.
GAN Haonan,WANG Guiling,LIN Wenjing,et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review,2015,33(19):22−27.
[5] 马峰,孙红丽,蔺文静,等. 中国EGS示范工程靶区选址与指标矩阵评价[J]. 科技导报,2015,33(8):41−47.
MA Feng,SUN Hongli,LIN Wenjing,et al. Target site selection and index matrix evaluation of EGS trial project in China[J]. Science & Technology Review,2015,33(8):41−47.
[6] 蔺文静,甘浩男,王贵玲,等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报,2016,90(8):2043−2058.
LIN Wenjing,GAN Haonan,WANG Guiling,et al. Occurrence prospect of HDR and target site selection study in southeastern of China[J]. Acta Geologica Sinica,2016,90(8):2043−2058.
[7] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):1366−1381.
LIN Wenjing,WANG Guiling,SHAO Jingli,et al. Distribution and exploration of hot dry rock resources in China:Progress and inspiration[J]. Acta Geologica Sinica,2021,95(5):1366−1381.
[8] 张保建,李燕燕,高俊,等. 河北省马头营干热岩的成因机制及其示范意义[J]. 地质学报,2020,94(7):2036−2051.
ZHANG Baojian,LI Yanyan,GAO Jun,et al. Genesis and indicative significance of hot dry rock in Matouying,Hebei Province[J]. Acta Geologica Sinica,2020,94(7):2036−2051.
[9] 张超,胡圣标,黄荣华,等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展,2022,37(5):1907−1919.
ZHANG Chao,HU Shengbiao,HUANG Ronghua,et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics,2022,37(5):1907−1919.
[10] 刘德民,张昌生,孙明行,等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报,2021,40(3):1−11.
LIU Demin,ZHANG Changsheng,SUN Minghang,et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology,2021,40(3):1−11.
[11] 刘德民,韦梅华,孙明行,等. 干热岩控热构造系统厘定与类型划分[J]. 地球科学,2022,47(10):3723−3735.
LIU Demin,WEI Meihua,SUN Minghang,et al. Classification and determination of thermal control structural system of hot dry rock[J]. Earth Science,2022,47(10):3723−3735.
[12] 饶松,黄顺德,胡圣标,等. 中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示[J]. 地球科学,2023,48(3):857−877.
RAO Song,HUANG Shunde,HU Shengbiao,et al. Exploration target selection of hot dry rock in Chinese continent:Enlightenment from genesis mechanism of global hot dry rock system[J]. Earth Science,2023,48(3):857−877.
[13] 李奉翠,韩二帅,梁磊,等. 中深层地热井下同轴换热器长期换热性能研究[J]. 煤田地质与勘探,2021,49(2):194−201.
LI Fengcui,HAN Ershuai,LIANG Lei,et al. Long–term heat transfer performance of underground coaxial heat exchanger for medium–deep geothermal[J]. Coal Geology & Exploration,2021,49(2):194−201.
[14] 孙致学,姜传胤,张凯,等. 基于离散裂缝模型的CO2 增强型地热系统THM 耦合数值模拟[J]. 中国石油大学学报(自然科学版),2020,44(6):79−87.
SUN Zhixue,JIANG Chuanyin,ZHANG Kai,et al. Numerical simulation for heat extraction of CO2–EGS with thermal–hydraulic–mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science),2020,44(6):79−87.
[15] 汪集暘,孔彦龙,段忠丰,等. “双碳”目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探,2023,51(2):1−11.
WANG Jiyang,KONG Yanlong,DUAN Zhongfeng,et al. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration,2023,51(2):1−11.
[16] 甘浩男,蔺文静,王贵玲,等. 广东惠州黄沙洞地区岩石圈热–流变结构及其热源启示[J]. 水文地质工程地质,2023,50(4):26−38.
GAN Haonan,LIN Wenjing,WANG Guiling,et al. Lithospheric thermo–rheological structure of the Huangshadong geothermal field in Huizhou of Guangdong and its heat–sources implications[J]. Hydrogeology & Engineering Geology,2023,50(4):26−38.
[17] 孙明行,张起钻,刘德民,等. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报,2022,41(3):330−340.
SUN Minghang,ZHANG Qizuan,LIU Demin,et al. Genesis and occurrence models of hot–dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology,2022,41(3):330−340.
[18] 龙西亭,袁瑞强,邓新平,等. 汝城干热岩地热资源研究[J]. 科技导报,2015,33(19):68−73.
LONG Xiting,YUAN Ruiqiang,DENG Xinping,et al. Hot dry rock geothermal resources in Ru County[J]. Science & Technology Review,2015,33(19):68−73.
[19] 杨汉元. 湖南汝城地区干热岩资源前景及参数孔选址研究[J]. 中国煤炭地质,2020,32(6):41−47.
YANG Hanyuan. Study on hot dry rock resources prospect and stratigraphic well siting in Rucheng area,Hunan[J]. Coal Geology of China,2020,32(6):41−47.
[20] 叶见玲,杨汉元,何大芳,等. 湖南省干热岩资源潜力及有利区分析[J]. 煤炭技术,2019,38(3):70−72.
YE Jianling,YANG Hanyuan,HE Dafang,et al. Resource potential and favorable area analysis of hot dry rock in Hunan Province[J]. Coal Technology,2019,38(3):70−72.
[21] 欧健,皮建高,张保建,等. 基于多种估算方法的湖南省现今地温梯度综合确定[J]. 地球学报,2023,44(3):543−557.
OU Jian,PI Jiangao,ZHANG Baojian,et al. Comprehensive determination of present geothermal gradient in Hunan Province based on multiple estimation methods[J]. Acta Geoscientica Sinica,2023,44(3):543−557.
[22] 邓平,任纪舜,凌洪飞,等. 诸广山南体印支期花岗岩的SHRIMP锆石U–Pb年龄及其构造意义[J]. 科学通报,2012,57(14):1231−1241.
DENG Ping,REN Jishun,LING Hongfei,et al. SHRIMP zircon U–Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite,South China[J]. Chinese Science Bulletin,2012,57(14):1231−1241.
[23] 李建威,李先福,李紫金,等. 走滑变形过程中的流体包裹体研究:以湘东地区为例[J]. 大地构造与成矿学,1999,23(3):240−247.
LI Jianwei,LI Xianfu,LI Zijin,et al. Fluid inclusions study in the process of strike slip faulting:A case study in eastern Hunan Province[J]. Geotectonica et Metallogenia,1999,23(3):240−247.
[24] 傅昭仁,李紫金,郑大瑜. 湘赣边区NNE向走滑造山带构造发展样式[J]. 地学前缘,1999,6(4):263−272.
FU Zhaoren,LI Zijin,ZHENG Dayu. Structural pattern and tectonic evolution of NNE–trending strike–slip orogenic belt in the border region of Hunan and Jiangxi Provinces[J]. Earth Science Frontiers,1999,6(4):263−272.
[25] 赵宝峰,汪启年,官大维,等. 带状热储地热田温度场特征及控热因素:以湖南省汝城县热水圩地热田为例[J]. 地质通报,2022,41(11):2035−2046.
ZHAO Baofeng,WANG Qinian,GUAN Dawei,et al. Temperature field characteristics and thermal control factors of banded reservoirs geothermal field:An example of Reshui–town geothermal field,Hunan Province[J]. Geological Bulletin of China,2022,41(11):2035−2046.
[26] 杨支援,叶见玲. 湖南汝城干热岩赋存条件及资源类型分析[J]. 湘潭大学学报(自然科学版),2021,43(6):107−116.
YANG Zhiyuan,YE Jianling. Analysis on occurrence conditions and resource types of hot dry rock in Rucheng,Hunan Province[J]. Journal of Xiangtan University (Natural Science Edition),2021,43(6):107−116.
[27] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1/2/3/4):41−50.
[28] 王莹,周训,于湲,等. 应用地热温标估算地下热储温度[J]. 现代地质,2007,21(4):605−612.
WANG Ying,ZHOU Xun,YU Yuan,et al. Application of geothermometers to calculation of temperature of geothermal reservoirs[J]. Geoscience,2007,21(4):605−612.
[29] 甘浩男,蔺文静,闫晓雪,等. 粤中隐伏岩体区地热赋存特征及热异常成因分析[J]. 地质学报,2020,94(7):2096−2106.
GAN Haonan,LIN Wenjing,YAN Xiaoxue,et al. Analysis of geothermal occurrence characteristics and origin of the thermal anomalies in the hidden igneous rock area in the central Guangdong[J]. Acta Geologica Sinica,2020,94(7):2096−2106.
[30] 李学礼. 江西温泉成因与铀矿化关系研究[J]. 华东地质学院学报,1992,15(3):201−220.
LI Xueli. Study on the relationship between Jiangxi hot–spring genesis and uranium mineralization[J]. Journal of East China Geological Institute,1992,15(3):201−220.
[31] 钟小平. 湖南省深断裂构造及其与铀成矿的关系[J]. 湖南科技学院学报,2007,28(9):55−58.
ZHONG Xiaoping. Deep fault structures in Hunan Province and their relationship with uranium mineralization[J]. Journal of Hunan University of Science and Engineering,2007,28(9):55−58.
[32] 李庆阳,蔡惠蓉,陈彦. 地热场与深部铀矿的关系研究及应用[J]. 中国地质,2010,37(1):198−203.
LI Qingyang,CAI Huirong,CHEN Yan. The study and application of the relationship between the geothermal field and the deep uranium ore deposit[J]. Geology in China,2010,37(1):198−203.
[33] ARNEY B H,GOFF F. Evaluation of the hot–dry–rock geothermal potential of an area near Mountain Home,Idaho[R]. Los Alamos:Los Alamos National Laboratory,1982.
[34] HINZE W J,BRAILE L W,VON FRESE R R B,et al. Exploration for hot dry rock geothermal resources in the Midcontinent USA:Hot dry rock conceptual models for exploration,HDR test site investigations,and the Illinois Deep Drill Hole Project[R]. Los Alamos:Los Alamos National Laboratory,1986.
[35] RIMI A,FERNANDEZ M,MANAR A,et al. Geothermal anomalies and analysis of gravity,fracturing and magnetic features in Morocco[J]. International Journal of Medical Robotics + Computer Assisted Surgery Mrcas,2005,10(4):432−438.
[36] THIEL S,PEACOCK J,HEINSON G S,et al. Electromagnetic monitoring of stimulated hot dry rock systems–modelling and examples from South Australia[C]//AGU Fall Meeting,AGU Fall Meeting Abstracts,2011:S39–44.
[37] SUZUKI K,KAIEDA H,OHTA Y,et al. Seismic reflection method and CSAMT method at Ogachi Hot Dry Rock site[C]//Ogachi Koon Gantai Chill Ni Okern Hanshaho Jishin Tansa To CSAMT Hotansa. Bulsuri Tansa (Geophysics Exploration),1998,52:275–279.
[38] GAO Ji,ZHANG Haijiang,ZHANG Senqi,et al. Three–dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin,northeast Tibetan Plateau[J]. Geothermics,2018,76:15−25.
[39] 张帆. 青藏高原东北缘(大井)–华南(泉州)壳幔电性结构特征及其构造涵义[D]. 北京:中国地质大学(北京),2013.
ZHANG Fan. The characteristics and tectonic implications of electrical structure in the crust and mantle from the northeastern margin of the Tibetan Plateau (Dajing) to South China (Quanzhou)[D]. Beijing:China University of Geosciences (Beijing),2013.
[40] 袁学诚,宋宝春,寿嘉华,等. 台湾–黑水地学断面[C]//1990年中国地球物理学会第六届学术年会论文集. 武汉:地球物理学会,1990.
[41] 饶家荣,王纪恒,曹一中. 湖南深部构造[J]. 湖南地质,1993(A08):1−101.
RAO Jiarong,WANG Jiheng,CAO Yizhong. Deep structure in Hunan[J]. Hunan Geology,1993(A08):1−101.
[42] 陈小东,黄如松,应西荣,等. 湘南桂北地区铀矿地质–水文地球化学找矿标志及找矿模式[J]. 铀矿地质,2002,18(4):229−234.
CHEN Xiaodong,HUANG Rusong,YING Xirong,et al. Geologic–hydrogeochemical prospecting criteria and prospecting model for uranium deposits in southern Hunan and northern Guangxi[J]. Uranium Geology,2002,18(4):229−234.
[43] 周立坚. 汝城地热田地热井非线性增温成因浅析[J]. 华南地质与矿产,2016,32(3):218−223.
ZHOU Lijian. The cause of nonlinear temperature increase of geothermal well in Rucheng geothermal field[J]. Geology and Mineral Resources of South China,2016,32(3):218−223.
[44] 汪洋,汪集旸,邓晋福,等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展,2001,16(3):21−30.
WANG Yang,WANG Jiyang,DENG Jinfu,et al. Heat flow constraint on the abundance of uranium,thorium and potassium in crust and lithosphere of the continental area of China[J]. Progress in Geophysics,2001,16(3):21−30.
[45] 章邦桐,谢炳荣,戴永善. 华南花岗岩型铀矿床成矿热源的分析和计算[J]. 矿床地质,1990,9(3):270−278.
ZHANG Bangtong,XIE Bingrong,DAI Yongshan. The analysis and calculation of metallogenic heat source for granite–type uranium deposits in South China[J]. Mineral Deposits,1990,9(3):270−278.
[46] 李先福,李建威,傅昭仁,等. 湘赣边区鹿井矿田走滑构造特征分析[J]. 大地构造与成矿学,1999,23(2):123−129.
LI Xianfu,LI Jianwei,FU Zhaoren,et al. Analysis of strike–slip tectonics in the Lujing Orefield at the border between Hunan and Jiangxi Provinces,China[J]. Geotectonica et Metallogenia,1999,23(2):123−129.
[47] 李建威,李紫金,傅昭仁,等. 遂川–热水走滑断裂带热异常与热液铀成矿作用[J]. 地质科技情报,2000,19(3):39−43.
LI Jianwei,LI Zijin,FU Zhaoren,et al. Heat sources and hydrothermal uranlum mineralization in the Suichuan–Reshui strike–slip fault zone[J]. Geological Science and Technology Information,2000,19(3):39−43.
[48] HUANG Jinli,ZHAO Dapeng. High–resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research,2006,111(B9):B09305.
[49] 李浩民,吴中海,王浩男,等. 长江中游湖南、湖北地区主要活动断裂及地震地质特征[J]. 地质力学学报,2016,22(3):478−499.
LI Haomin,WU Zhonghai,WANG Haonan,et al. Geological characteristics of the main active faults and earthquakes in Hunan and Hubei areas,the middle reaches of the Yangtze River[J]. Journal of Geomechanics,2016,22(3):478−499.
[50] 余辉. 相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景[D]. 南昌:东华理工大学,2021.
YU Hui. Three–dimensional fine structure and geodynamics setting of transcrustal magmatic system beneath the Xiangshan Volcanic Basin[D]. Nanchang:East China University of Technology,2021.
[51] 陈昌昕,吕庆田,陈凌,等. 华南陆块地壳厚度与物质组成:基于天然地震接收函数研究[J]. 中国科学:地球科学,2022,52(4):760−776.
CHEN Changxin,LYU Qingtian,CHEN Ling,et al. Crustal thickness and composition in the south China Block:Constraints from earthquake receiver function[J]. Science China Earth Sciences,2022,52(4):760−776.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons