•  
  •  
 

Coal Geology & Exploration

Authors

LUO Huan, Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu 611756, ChinaFollow
LIU Zhennan, Kunming Natural Resources Comprehensive Survey Center, China Geological Survey, Kunming 650111, China; Innovation Base for Eco-geological Evolution, Protection, and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
MA Yiqi, Kunming Natural Resources Comprehensive Survey Center, China Geological Survey, Kunming 650111, China; Innovation Base for Eco-geological Evolution, Protection, and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, ChinaFollow
ZHANG Yunhui, Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu 611756, China
TAO Lanchu, Kunming Natural Resources Comprehensive Survey Center, China Geological Survey, Kunming 650111, China; Innovation Base for Eco-geological Evolution, Protection, and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
CHEN Qingsong, Kunming Natural Resources Comprehensive Survey Center, China Geological Survey, Kunming 650111, China; Innovation Base for Eco-geological Evolution, Protection, and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
FU Dunkai, Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu 611756, China
WU Xiangchuan, Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

The hydrochemistry and genesis mechanism of thermal springs hold great significance for the exploitation and utilization of low to intermediate temperature geothermal resources. Under the influence of a concealed fault zone, thermal springs in the Luolou River basin, Yunnan Province, are distributed along both sides of valleys and exposed in Quaternary loose deposits and Permian basalt strata. It belongs to low to intermediate temperature thermal spring water, with temperatures ranging between 34.5 and 50.0℃, pH is between 7.62-9.73, TDS is between 262-702 mg/L. Based on the hydrochemical and isotopic tests of thermal spring samples and nearby cold water samples from the Luolou River basin, this study explored the hydrological cycle, hydrochemical evolution, and genesis mode of the thermal springs and groundwater using the hydrogeochemical method. The results show that the thermal spring water has a hydrochemical type of HCO3-Na due to the mixing of HCO3-Ca type shallow cold groundwater. Furthermore, the chemical compositions of the thermal springs and cold groundwater are influenced by the leaching of silicate and carbonate minerals. Hydrogen and oxygen isotope analysis indicates that the thermal springs and cold groundwater are primarily recharged by meteoric precipitation, with recharge elevation ranging from 2007 to 2307 m. The recharge area is the mountain range of the valley, such as the northwest Maer Mountain, the north Guogai Mountain and the central Zuojia Mountain. The thermal springs exhibit reservoir temperatures ranging from 68.4 to 150.0℃, as estimated using silica geothermometers, silica-enthalpy mixing model, and multi-mineral equilibrium simulations. The mixing ratio of cold water is estimated to be 77.9%-90.5% by silica-enthalpy mixing model. Regarding the genesis mode of thermal springs in the Luolou River basin, the atmospheric precipitation infiltrates along the fissure or karst channel, and is then heated by terrestrial heat flow during deep underground circulation with a depth of 2 872-3 724 m. Afterward, driven by the high temperature and the density difference between cold and hot water, the water upwells along the concealed Bailiancun fault zone, exposed as low to intermediate temperature thermal springs in the Quaternary strata. The results of this study will provide a basis for the exploitation and utilization of hot springs in the Luolou River basin and exploring the exploitation potential of the same type of low to intermediate temperature geothermal resources.

Keywords

Luolou River basin, thermal spring, hydrochemistry characteristics, reservoir temperature, multiple mineral equilibrium simulation, genesis mode

DOI

10.12363/issn.1001-1986.23.10.0689

Reference

[1] 汪集暘,孔彦龙,段忠丰,等. “双碳”目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探,2023,51(2):1−11.

WANG Jiyang,KONG Yanlong,DUAN Zhongfeng,et al. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration,2023,51(2):1−11.

[2] WANG Yingchun,LI Liang,WEN Huaguo,et al. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field,southern Tibet[J]. Journal of Hydrology,2022,604:127243.

[3] 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1−9.

WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1−9.

[4] 庞忠和,黄少鹏,胡圣标,等. 中国地热研究的进展与展望(1995–2014)[J]. 地质科学,2014,49(3):719−727.

PANG Zhonghe,HUANG Shaopeng,HU Shengbiao,et al. Geothermal studies in China:Progress and prospects 1995—2014[J]. Chinese Journal of Geology,2014,49(3):719−727.

[5] WANG Ying,YUAN Xingcheng,ZHANG Yunhui,et al. Hydrochemical,D–O–Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area,SW China:Insights into genetic mechanism and scaling potential[J]. Ore Geology Reviews,2023,158:105486.

[6] LU Lianghua,PANG Zhonghe,KONG Yanlong,et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan geothermal system near Nanjing,China:Implications for sustainable development[J]. Hydrogeology Journal,2018,26(5):1705−1719.

[7] KONG Yanlong,PANG Zhonghe,SHAO Haibing,et al. Recent studies on hydrothermal systems in China:A review[J]. Geothermal Energy,2014,2(1):19.

[8] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31.

WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31.

[9] CAPACCIONI B,VASELLI O,TASSI F,et al. Hydrogeochemistry of the thermal waters from the Sciacca geothermal field (Sicily,southern Italy)[J]. Journal of Hydrology,2011,396(3/4):292−301.

[10] HAHNLEIN S,BAYER P,FERGUSON G,et al. Sustainability and policy for the thermal use of shallow geothermal energy[J]. Energy Policy,2013,59:914−925.

[11] MONGILLO M A. Preface to geothermics special issue on sustainable geothermal utilization[J]. Geothermics,2010,39(4):279−282.

[12] ZHENG Xiuhua,DUAN Chenyang,XIA Bairu,et al. Hydrogeochemical modeling of the shallow thermal water evolution in Yangbajing geothermal field,Tibet[J]. Journal of Earth Science,2019,30(4):870−878.

[13] CRISS R E. Use of geochemical and geophysical techniques to characterize and prospect for geothermal resources and hydrothermal ore deposits[J]. Journal of Earth Science,2015,26(1):73−77.

[14] 张萌,蔺文静,刘昭,等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版),2014,41(3):382−392.

ZHANG Meng,LIN Wenjing,LIU Zhao,et al. Hydrogeochemical characteristics and genetic model of Gulu high–temperature geothermal system in Tibet,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):382−392.

[15] 王多义. 四川绵竹酿春池温泉地质成因分析[J]. 成都理工大学学报(自然科学版),2005,32(5):479−485.

WANG Duoyi. Geological genesis analysis of the Niangchunchi hot spring in Mianzhu,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2005,32(5):479−485.

[16] 张云辉. 鲜水河断裂康定–磨西段地热系统成因及开发利用研究[D].成都:成都理工大学,2018.

ZHANG Yunhui. Research on genesis and development of the geothermal system in the Kangding–Moxi segment of the XianshuiheFault[D]. Chengdu:Chengdu University of Technology,2018.

[17] ARNORSSON S. Isotopic and chemical techniques in geothermal exploration,development and use:Sampling methods,data handling,interpretation[M]. Vienna:International Atomic Energy Agency,2000.

[18] WANG Chenguang,ZHENG Mianping. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County,Himalayas[J]. Geothermics,2019,81:243−258.

[19] ZHANG Xialin,DENG Chengdong,FENG Tao,et al. Geochemical investigations of the geothermal waters in the Kangding area,SW China:Constraints from hydrochemistry and D–O–T isotopy[J]. Water,2023,15(15):2761.

[20] 李晓,王金金,黄珣,等. 鲜水河断裂带康定至道孚段热水化学与同位素特征[J]. 成都理工大学学报(自然科学版),2018,45(6):733−745.

LI Xiao,WANG Jinjin,HUANG Xun,et al. Chemical and isotopic characteristics of hot water in the Kangding–Daofu section of Xianshuihe fault zone,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):733−745.

[21] ZHOU Rui,ZHOU Xiaocheng,LI Ying,et al. Hydrogeochemical and isotopic characteristics of the hot springs in the Litang fault zone,southeast Qinghai–Tibet Plateau[J]. Water,2022,14(9):1496.

[22] LI Yiman,PANG Zhonghe,GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of eastern Himalayan Syntax[J]. Geothermics,2020,87:101844.

[23] TAN Hongbing,ZHANG Yanfei,ZHANG Wenjie,et al. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry,2014,51:23−32.

[24] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(346):1702−1703.

[25] SINGH C K,KUMAR A,SHASHTRI S,et al. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi,India[J]. Journal of Geochemical Exploration,2017,175:59−71.

[26] LI Xiao,HUANG Xun,LIAO Xin,et al. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe fault zone,southwestern China[J]. International Journal of Environmental Research Public Health,2020,17(2):500.

[27] KHARAKA Y K,MARINER R H. Chemical geothermometers and their application to formation waters from sedimentary basins[M]. Thermal History of Sedimentary Basins Methods & Case Histories,1989.

[28] FOURNIER R O,TRUESDELL A H. Empirical Na–K–Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta,1973,37(5):1255−1275.

[29] 马瑞. 碳酸盐岩热储隐伏型中低温热水的成因与水–岩相互作用研究:以山西太原为例[D]. 武汉:中国地质大学(武汉),2007.

MA Rui. Water–rock interaction and genesis of low–medium temperature thermal groundwater in carbonate reservoir:A case study at Taiyuan,Shanxi[D]. Wuhan:China University of Geosciences(Wuhan),2007.

[30] 邹鹏飞,邱杨,范迪富. 苏北盆地典型地区中低温地热流体地球化学特征研究[J]. 高校地质学报,2022,28(2):262−273.

ZOU Pengfei,QIU Yang,FAN Difu. Study on geochemical characteristics of mid–low temperature geothermal fluid in representative area of Subei Basin[J]. Geological Journal of China Universities,2022,28(2):262−273.

[31] 史猛,张杰,殷焘,等. 胶东半岛中低温对流型地热资源水化学特征分析[J]. 地质学报,2019,93(增刊1):138−148.

SHI Meng,ZHANG Jie,YIN Tao,et al. Hydrochemistry characteristic analysis of low–medium temperature convective geothermal resources in Jiaodong Peninsula[J]. Acta Geologica Sinica,2019,93(Sup.1):138−148.

[32] 王敏黛,郭清海,严维德,等. 青海共和盆地中低温地热流体发电[J]. 地球科学(中国地质大学学报),2014,39(9):1317−1322.

WANG Mindai,GUO Qinghai,YAN Weide,et al. Medium–low–enthalpy geothermal power–electricity generation at Gonghe Basin,Qinghai Province[J]. Earth Science (Journal of China University of Geosciences),2014,39(9):1317−1322.

[33] PIPER A M. A graphic procedure in the geochemical interpretation of water–analyses[J]. Eos,Transactions American Geophysical Union,1944,25(6):914−928.

[34] 刘明亮,曹耀武,王敏黛,等. 腾冲热海热泉水化学组分来源及其形成机制探讨[J]. 安全与环境工程,2014,21(6):1−7.

LIU Mingliang,CAO Yaowu,WANG Mindai,et al. Source of hydrochemical composition and formation mechanism of Rehai geothermal water in Tengchong[J]. Safety and Environmental Engineering,2014,21(6):1−7.

[35] YANG Pingheng,LUO Dan,HONG Aihua,et al. Hydrogeochemistry and geothermometry of the carbonate–evaporite aquifers controlled by deep–seated faults using major ions and environmental isotopes[J]. Journal of Hydrology,2019,579:124116.

[36] ZHANG Yunhui,DAI Yongsheng,WANG Ying,et al. Hydrochemistry,quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area,southwestern China[J]. Science of the Total Environment,2021,784:147186.

[37] ZHANG Yunhui,HE Zhihao,TIAN Haohao,et al. Hydrochemistry appraisal,quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin,southwestern China[J]. Environmental Earth Sciences,2021,80(17):576.

[38] CAROL E,KRUSE E,MAS–PLA J. Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay,Argentina[J]. Journal of Hydrology,2009,365(3/4):335−345.

[39] XIAO Yong,LIU Kui,YAN Huijun,et al. Hydrogeochemical constraints on groundwater resource sustainable development in the arid Golmud alluvial fan plain on Tibetan Plateau[J]. Environmental Earth Sciences,2021,80(22):750.

[40] KONG Yanlong,WANG Ke,LI Jie,et al. Stable isotopes of precipitation in China:A consideration of moisture sources[J]. Water,2019,11(6):1239.

[41] 上官志冠. 腾冲热海地热田热储结构与岩浆热源的温度[J]. 岩石学报,2000,16(1):83−90.

SHANGGUAN Zhiguan. Structure of geothermal reservoirs and the temperature of mantle–derived magma hot source in the Rehai area,Tengchong[J]. Acta Petrologica Sinica,2000,16(1):83−90.

[42] 李捷,庞忠和. 青藏高原东坡降水的同位素高程梯度[J]. 中国科学:地球科学,2022,52(11):2193−2205.

LI Jie,PANG Zhonghe. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau[J]. Science China Earth Sciences,2022,52(11):2193−2205.

[43] 曹入文,周训,陈柄桦,等. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析[J]. 地学前缘,2021,28(4):361−372.

CAO Ruwen,ZHOU Xun,CHEN Binghua,et al. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province[J]. Earth Science Frontiers,2021,28(4):361−372.

[44] 王洁青,周训,李晓露,等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质,2017,31(4):822−831.

WANG Jieqing,ZHOU Xun,LI Xiaolu,et al. Hydrochemistry and formation of the Yangchimi hot spring in the Lanping Basin of Yunnan[J]. Geoscience,2017,31(4):822−831.

[45] 李晓露. 云南洱源县牛街温泉的水化学特征与成因[D]. 北京:中国地质大学(北京),2017.

LI Xiaolu. Hydrochemical characteristics and formation of the Niujie hot springs in Eryuan County of Yunnan[D]. Beijing:China University of Geosciences (Beijing),2017.

[46] GIGGENBACH W F. Geothermal solute equilibria:Derivation of Na–K–Mg–Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749−2765.

[47] 吕国森,章旭,张云辉,等. 川西鲜水河、安宁河和龙门山断裂带地热水的水文地球化学特征及成因模式的讨论[J/OL]. 中国地质,2023:1–20 [2023-12-25]. https://kns.cnki.net/kcms2/detail/11.1167.p.20230607.1026.002.html.

LYU Guosen,ZHANG Xu,ZHANG Yunhui,et al. Discussion on hydrogeochemical characteristics and genetic model of geothermal waters in Xianshuihe,Anninghe and Longmenshan fault zones in western Sichuan,China[J/OL]. Geology in China,2023:1–20 [2023-12-25]. https://kns.cnki.net/kcms2/detail/11.1167.p.20230607.1026.002.html.

[48] 章旭,张文,吕国森,等. 川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据[J]. 沉积与特提斯地质,2023,43(2):388−403.

ZHANG Xu,ZHANG Wen,LYU Guosen,et al. Geochemical,geophysical genesis of the Ranggu geothermal spring in Aba Prefecture,western Sichuan:Evidence from hydrogeochemical and geophysical exploration[J]. Sedimentary Geology and Tethyan Geology,2023,43(2):388−403.

[49] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1/2/3/4):41−50.

[50] GIGGENBACH W F,GLOVER R B. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field,New Zealand[J]. Geothermics,1992,21(1/2):121−140.

[51] YI Lei,QI Jihong,LI Xiao,et al. Geochemical characteristics and genesis of the high–temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau[J]. Journal of Volcanology and Geothermal Research,2021,414:107244.

[52] PANG Zhihong,REED M. Theoretical chemical thermometry on geothermal waters:Problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083−1091.

[53] TIAN Jiao,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis[J]. Applied Geochemistry,2019,110:104422.

[54] TIAN Jiao,PANG Zhonghe,GUO Qi,et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high–temperature geothermal system in the eastern Himalayan Syntax[J]. Geothermics,2018,74:92−105.

[55] GUO Qi,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry and geothermometry applications of the Kangding high–temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry,2017,81:63−75.

[56] 汪集旸,黄少鹏. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质,1990,12(4):351−366.

WANG Jiyang,HUANG Shaopeng. Compilation of heat flow data in the China continental area (2nd edition)[J]. Seismology and Geology,1990,12(4):351−366.

[57] 胡圣标,何丽娟,汪集旸. 中国大陆地区大地热流数据汇编(第三版)[J]. 地球物理学报,2001,44(5):611−626.

HU Shengbiao,HE Lijuan,WANG Jiyang. Compilation of heat flow data in the China continental area (3rd edition)[J]. Chinese Journal of Geophysics,2001,44(5):611−626.

[58] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892−2910.

JIANG Guangzheng,GAO Peng,RAO Song,et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892−2910.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.