Coal Geology & Exploration
Abstract
Central Inner Mongolia, located at the junction of plates, has undergone multi-phase tectono-magmatic activities and boasts abundant shallow hydrothermal resources. However, there is a lack of in-depth research on deep hot dry rock (HDR) geothermal resources in this region. Based on the regional geological and tectonic settings, magnetotelluric sounding results, and geothermal anomaly manifestations, this study systematically explored the genetic mechanisms and geodynamic process of HDR geothermal resources in central Inner Mongolia and determined the genetic modes of HDRs. The results show that the major heat sources of deep HDR geothermal resources in the region include deep local melts and residual high-temperature magma pockets, with heat flow channels encompassing suture zones between plates, regional deep-seated fault zones and their intersections, secondary faults, and weak layers such as ductile shear zones with plastic rheological properties in the crust. The HDR reservoirs in central Inner Mongolia primarily comprise Cenozoic mafic intrusive rocks, namely diabase and gabbro. Additionally, granites heated by high-temperature magmas and intrusive bodies are potential HDR reservoirs in the study area. The regional cap rocks of HDRs include the Cretaceous, Neogene and Quaternary sedimentary strata. The continental collision and amalgamation between the Siberian plate and the North China Craton led to the formation of collision zones that are prone to be destroyed. The subduction of the Paleo-Pacific Plate to the North China plate in the west since the Late Mesozoic Cenozoic resulted in the melting of the lithosphere bottom, the extension and thinning of the lithosphere, and the upwelling of thermal materials in the mantle asthenosphere. These, together with the accompanied intense activity of Cenozoic faults and fault depressions, jointly led to the strong magmatic and volcanic activity during the Late Mesozoic and Cenozoic. There are three heat accumulation modes in central Inner Mongolia: (1) The high-temperature HDR systems of Cenozoic diabase and gabbro reservoirs are dominant HDR reservoir in the region. (2) The moderately-high-temperature HDR systems of granite reservoirs prior to the Cenozoic are potential HDR reservoirs. (3) The hydrothermal systems of shallow clastic-rock, granite, or metamorphic rock reservoirs are dominant shallow hydrothermal reservoirs. Since shallow high-temperature hydrothermal systems are consanguineous and paragenetic with deep HDR geothermal systems in central Inner Mongolia, delineating shallow high-temperature anomalous areas will provide indicators for the discovery of deep HDRs.
Keywords
central Inner Mongolia, hot dry rock (HDR), heat source, genetic mechanism, magmatic activity
DOI
10.12363/issn.1001-1986.23.10.0685
Recommended Citation
XIONG Bo, XU Hao, TANG Shuling,
et al.
(2024)
"Genetic mechanisms of hot dry rock geothermal resources in central Inner Mongolia,"
Coal Geology & Exploration: Vol. 52:
Iss.
1, Article 5.
DOI: 10.12363/issn.1001-1986.23.10.0685
Available at:
https://cge.researchcommons.org/journal/vol52/iss1/5
Reference
[1] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31.
WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31.
[2] 饶松,黄顺德,胡圣标,等. 中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示[J]. 地球科学,2023,48(3):857−877.
RAO Song,HUANG Shunde,HU Shengbiao,et al. Exploration target selection of hot dry rock in Chinese continent:Enlightenment from genesis mechanism of global hot dry rock system[J]. Earth Science,2023,48(3):857−877.
[3] 张超,胡圣标,黄荣华,等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展,2022,37(5):1907−1919.
ZHANG Chao,HU Shengbiao,HUANG Ronghua,et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics,2022,37(5):1907−1919.
[4] 毛翔,国殿斌,罗璐,等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评,2019,65(6):1462−1472.
MAO Xiang,GUO Dianbin,LUO Lu,et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review,2019,65(6):1462−1472.
[5] 刘德民,张昌生,孙明行,等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报,2021,40(3):1−11.
LIU Demin,ZHANG Changsheng,SUN Minghang,et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology,2021,40(3):1−11.
[6] 饶松,姜光政,高雅洁,等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报,2016,59(6):2176−2190.
RAO Song,JIANG Guangzheng,GAO Yajie,et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophysics,2016,59(6):2176−2190.
[7] PEACOCK J R,EARNEY T E,MANGAN M T,et al. Geophysical characterization of the northwest Geysers geothermal field,California[J]. Journal of Volcanology and Geothermal Research,2020,399:106882.
[8] APREA C M,HILDEBRAND S,FEHLER M,et al. Three–dimensional Kirchhoff migration:Imaging of the Jemez volcanic field using teleseismic data[J]. Journal of Geophysical Research:Solid Earth,2002,107(B10):2247−2258.
[9] STECK L K,THURBER C H,FEHLER M C,et al. Crust and upper mantle P wave velocity structure beneath Valles Caldera,New Mexico:Results from the Jemez teleseismic tomography experiment[J]. Journal of Geophysical Research:Solid Earth,1998,103(B10):24301−24320.
[10] 闫岩,张迪,赵国春,等. 内蒙古自治区地热资源分布特征与潜力评价[J]. 干旱区资源与环境,2017,31(10):51−57.
YAN Yan,ZHANG Di,ZHAO Guochun,et al. Distribution characteristics and potential evaluation of geothermal resources in Inner Mongolia[J]. Journal of Arid Land Resources and Environment,2017,31(10):51−57.
[11] XIAO Wenjiao,WINDLEY B F,HAO Jie,et al. Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt[J]. Tectonics,2003,22(6):1069.
[12] 张以明,刘震,付升,等. 二连盆地基底特征及演化新认识[J]. 石油地球物理勘探,2019,54(2):404−416.
ZHANG Yiming,LIU Zhen,FU Sheng,et al. New understandings of the basement characteristics and evolution process of Erlian Basin[J]. Oil Geophysical Prospecting,2019,54(2):404−416.
[13] 肖安成,杨树锋,陈汉林. 二连盆地形成的地球动力学背景[J]. 石油与天然气地质,2001,22(2):137−140.
XIAO Ancheng,YANG Shufeng,CHEN Hanlin. Geodynamic background on formation of Erlian Basin[J]. Oil & Gas Geology,2001,22(2):137−140.
[14] 程三友,刘少峰,苏三,等. 二连盆地赛汉塔拉凹陷构造特征分析[J]. 石油地球物理勘探,2011,46(6):961−969.
CHENG Sanyou,LIU Shaofeng,SU San,et al. Structural characteristics analysis of Saihantala Sag in Erlian Basin[J]. Oil Geophysical Prospecting,2011,46(6):961−969.
[15] 任建业,林畅松,李思田,等. 二连盆地乌里亚斯太断陷层序地层格架及其幕式充填演化[J]. 沉积学报,1999,17(4):553−559.
REN Jianye,LIN Changsong,LI Sitian,et al. Sequence stratigraphic framework of Wuliyasitai Faulted Basin in Erlian Basin group and its episodic filling evolution[J]. Acta Sedimentologica Sinica,1999,17(4):553−559.
[16] 张呈彬. 赤峰盆地地质构造及其演化特征[D]. 阜新:辽宁工程技术大学,2013.
ZHANG Chengbin. Geological structures and evolution characters of Chifeng Basin[D]. Fuxin:Liaoning Technical University,2013.
[17] 郭鹏远. 内蒙古中部地区中–新生代火山岩的成因[D]. 兰州:兰州大学,2015.
GUO Pengyuan. The petrogenesis of the Mesozoic–Cenozoic volcanic rocks from central Inner Mongolia[D]. Lanzhou:Lanzhou University,2015.
[18] 薛志文. 二连盆地乌尼特坳陷早白垩世盆地三史分析与油气成藏研究[D]. 徐州:中国矿业大学,2019.
XUE Zhiwen. Three history analysis and hydrocarbon accumulation of Early Cretaceous Basin in Wunite Depression,Erlian Basin[D]. Xuzhou:China University of Mining and Technology,2019.
[19] 张英,冯建赟,罗军,等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘,2020,27(1):35−47.
ZHANG Ying,FENG Jianyun,LUO Jun,et al. Screening of hot dry rock in the south–central part of the Bohai Bay Basin[J]. Earth Science Frontiers,2020,27(1):35−47.
[20] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449−459.
WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449−459.
[21] 张晓飞,滕超,周毅,等. 内蒙古西乌旗地区晚二叠世–早中三叠世花岗岩年代学和地球化学特征及构造意义[J]. 地质学报,2019,93(8):1903−1927.
ZHANG Xiaofei,TENG Chao,ZHOU Yi,et al. Geochronology and geochemistry of the Late Permian to Early–Middle Triassic granites in Xiwu Banner,Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica,2019,93(8):1903−1927.
[22] 杨宝美. 西乌旗地区中、新生代岩浆岩特征及其构造环境[D]. 阜新:辽宁工程技术大学,2009.
YANG Baomei. Meso–cenozoic magmatic rock characteristic and structure environment in Xi Ujimqin Qi[D]. Fuxin:Liaoning Technical University,2009.
[23] 王锡娇,白志达,谭琳,等. 锡林浩特–阿巴嘎火山群内的玛珥式火山[J]. 地震地质,2012,34(3):440−448.
WANG Xijiao,BAI Zhida,TAN Lin,et al. Maars in Xilinhot–Abaga volcanic cluster[J]. Seismology and Geology,2012,34(3):440−448.
[24] 王友,方曙. 内蒙古赤峰北部百岔河地区新第三纪火山地质及基性火山岩岩石地球化学特征[J]. 内蒙古地质,2001(2):28−33.
WANG You,FANG Shu. Geochemical characteristics of volcanic geology and basic volcanic rock of Neogene Period in Baichahe area of north Chifeng,Inner Mongolia[J]. Geology of Inner Mongolia,2001(2):28−33.
[25] 彭艳东,黄菲,邢德和,等. 赤峰市平庄–元宝山盆地汉诺坝玄武岩的地球化学特征及其构造背景[J]. 东北大学学报(自然科学版),2015,36(4):590−595.
PENG Yandong,HUANG Fei,XING Dehe,et al. Geochemical characteristics and tectonic setting of Hannuoba Basalts from Pingzhuang–Yuanbaoshan Basin in Chifeng[J]. Journal of Northeastern University (Natural Science),2015,36(4):590−595.
[26] 贾文,朱慧忠,邵济安. 内蒙古赤峰地区新生代玄武岩的时空分布[J]. 地质论评,2002,48(3):267−272.
JIA Wen,ZHU Huizhong,SHAO Ji’an. Temporal–spatial distribution of Cenozoic Basalts in Chifeng area,Inner Mongolia[J]. Geological Review,2002,48(3):267−272.
[27] 王瑜,李春风,陈洪洲. 中国东北地区新生代火山活动的构造背景[J]. 地质论评,1999,45(增刊1):180−189.
WANG Yu,LI Chunfeng,CHEN Hongzhou. Tectonic settings of Cenozoic volcanism in northeastern China[J]. Geological Review,1999,45(Sup.1):180−189.
[28] HAN Baofu,HE Guoqi,WANG Shiguang. Postcollisional mantle–derived magmatism,underplating and implications for basement of the Junggar Basin[J]. Science in China Series D:Earth Sciences,1999,42(2):113−119.
[29] 罗修泉,陈启桐. 内蒙古新生代玄武岩年代学初步研究[J]. 岩石矿物学杂志,1990,9(1):37−46.
LUO Xiuquan,CHEN Qitong. Preliminary study on geochronology for Cenozoic Basalts from Inner Mongolia[J]. Acta Petrologica et Mineralogica,1990,9(1):37−46.
[30] 董泽义. 内蒙古苏尼特左旗–辽宁丹东剖面深部电性结构研究[D]. 北京:中国地震局地质研究所,2011.
DONG Zeyi. The study on the deep electric conductivity structure along the profile from Sonid Zuoqi,Inner Mongolia to Dandong,Liaoning Province[D]. Beijing:Institute of Geology,China Earthquake Administrator,2011.
[31] 杨文采. 全球流体通道网[J]. 地球物理学报,1998,41(5):621−633.
YANG Wencai. On globle fluid–pathway network[J]. Chinese Journal of Geophysics,1998,41(5):621−633.
[32] 侯增谦,许博,郑远川,等. 地幔通道流:青藏高原大规模生长的深部机制[J]. 科学通报,2021,66(21):2671−2690.
HOU Zengqian,XU Bo,ZHENG Yuanchuan,et al. Mantle flow:The deep mechanism of large–scale growth in Tibetan Plateau[J]. Chinese Science Bulletin,2021,66(21):2671−2690.
[33] YANG Yu,ABART R,YANG Xiaosong,et al. Seismic anisotropy in the Tibetan lithosphere inferred from mantle xenoliths[J]. Earth and Planetary Science Letters,2019,515:260−270.
[34] 郑洪伟,李廷栋,高锐,等. 青藏高原北部新生代火山岩区深部结构特征及其成因探讨[J]. 现代地质,2010,24(1):131−139.
ZHENG Hongwei,LI Tingdong,GAO Rui,et al. Deep structure beneath the Cenozoic volcanic zone in the northern Qinghai–Tibet Plateau and its cause of formation discussion[J]. Geoscience,2010,24(1):131−139.
[35] AICHHOLZER C,DURINGER P,ORCIANI S,et al. New stratigraphic interpretation of the Soultz–sous–Forêts 30–year–old geothermal wells calibrated on the recent one from Rittershoffen (Upper Rhine Graben,France)[J]. Geothermal Energy,2016,4(1):13.
[36] 张晓飞. 内蒙古中东部晚古生代–早中生代岩浆岩特征及区域构造内涵[D]. 北京:中国地质大学(北京),2018.
ZHANG Xiaofei. Characteristics and regional tectonic implications of Late Paleozoic–Early Mesozoic magmatic rocks from the central and southern Inner Mongolia[D]. Beijing:China University of Geosciences (Beijing),2018.
[37] 杨文采,苏美霞,杨波,等. 内蒙古高原岩石圈构造研究[J]. 地质学报,2022,96(5):1599−1607.
YANG Wencai,SU Meixia,YANG Bo,et al. Geophysical study on lithospheric structure of Inner Mongolia Plateau[J]. Acta Geologica Sinica,2022,96(5):1599−1607.
[38] 万天丰. 论中国大陆复杂和混杂的碰撞带构造[J]. 地学前缘,2004,11(3):207−220.
WAN Tianfeng. On the complex and mixed collision zones in China continent[J]. Earth Science Frontiers,2004,11(3):207−220.
[39] 张健,方桂,何雨蓓. 中国东部地热异常区深层高温分布特征与动力学背景[J]. 地学前缘,2023,30(2):316−332.
ZHANG Jian,FANG Gui,HE Yubei. High–temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China[J]. Earth Science Frontiers,2023,30(2):316−332.
[40] 田有,马锦程,刘财,等. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报,2019,62(3):1071−1082
TIAN You,MA Jincheng,LIU Cai,et al. Effects of subduction of the western pacific plate on tectonic evolution of northeast China and geodynamic implications[J]. Chinese Journal of Geophysics,2019,62(3):1071−1082
[41] ZHU Guang,WANG Yongsheng,LIU Guosheng,et al. 40Ar/39Ar dating of strike–slip motion on the Tan–Lu fault zone,east China[J]. Journal of Structural Geology,2005,27(8):1379−1398.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons