Coal Geology & Exploration
Abstract
In the Yangbajing-Gulu rift, located in Xizang, the lithium concentration in geothermal water exceeds the average level of thermal springs in Xizang. However, the hydrochemical genesis of lithium in geothermal water in this rift remains controversial, and one primary reason for this is the unclear spatial distribution pattern of lithium. Common methods for analyzing spatial distribution patterns include Ordinary Kriging and CO-Kriging. Nevertheless, the former suffers low precision. For the latter, it is difficult to obtain suitable auxiliary variables. Given this, this study determined two auxiliary variables: (1) the Cl− concentration, a physicochemical parameter exhibiting the strongest correlation with lithium, and (2) comprehensive index F, as determined using principal component analysis. Integrating these two auxiliary variables separately into the CO-Kriging method formed the Cl−-CO-Kriging and F-CO-Kriging methods, which were employed to analyze the spatial distribution patterns of lithium in geothermal water in the Yangbajing-Gulu rift. The results indicate that, compared to Ordinary Kriging, both F-CO-Kriging and Cl−-CO-Kriging demonstrated significantly elevated prediction accuracy, with the former increasing EMA and ERMS by 30.3% and the latter by 28.5% on average. Furthermore, both methods revealed that lithium in geothermal water exhibits a spatial distribution consistent with faults and notable enrichment in the Yangbajing-Gulu geothermal area. This study further explored the hydrochemical genesis of the spatial distribution of lithium in geothermal water using hierarchical clustering and factor analysis. The results show that an alkaline environment characterized by high temperatures, high total dissolved solids (TDS), low Ca2+ and Mg2+ concentrations, and elevated born concentrations presents high lithium concentrations. The findings of this study will lay the groundwork for exploring the origin of high-concentration lithium and other rare metals in geothermal water on the Qinghai-Xizang Plateau and conducting relevant resource evaluation.
Keywords
geothermal water, lithium, Kriging method, principal component analysis (PCA), Yangbajing-Gulu rift
DOI
10.12363/issn.1001-1986.23.10.0688
Recommended Citation
CHEN Yakui, KONG Yanlong, DUAN Jiabin,
et al.
(2024)
"Statistical analysis of the spatial distribution and genesis of lithium in geothermal water in the Yangbajing-Gulu rift, Xizang,"
Coal Geology & Exploration: Vol. 52:
Iss.
1, Article 18.
DOI: 10.12363/issn.1001-1986.23.10.0688
Available at:
https://cge.researchcommons.org/journal/vol52/iss1/18
Reference
[1] CAN M F,BAŞARAN C,YILDIZ A,et al. Lithium extraction from geothermal waters;a case study of Ömer–Gecek (Afyonkarahisar) geothermal area[J]. Turkish Journal of Earth Sciences,2021,30(9):1208−1220.
[2] ZANTE G,BOLTOEVA M,MASMOUDI A,et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science,2019,580:62−76.
[3] SWAIN B. Recovery and recycling of lithium:A review[J]. Separation and Purification Technology,2017,172:388−403.
[4] WANG Hongshuang,CUI Jinjie,LI Mingli,et al. Selective recovery of lithium from geothermal water by EGDE cross–linked spherical CTS/LMO[J]. Chemical Engineering Journal,2020,389:124410.
[5] HE Maoyong,LUO Chongguang,YANG Hongjun,et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau,China:Evidence from Li isotopes[J]. Ore Geology Reviews,2020,117:103277.
[6] 赵元艺. 中国盐湖锂资源及其开发进程[J]. 矿床地质,2003,22(1):99−106.
ZHAO Yuanyi. Saline lake lithium resources of China and its exploitation[J]. Mineral Deposits,2003,22(1):99−106.
[7] GUO Qinghai,LIU Mingliang,LI Jiexiang,et al. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system,Yunnan–Tibet geothermal Province,China[J]. Journal of Geochemical Exploration,2017,172:109−119.
[8] 多吉. 典型高温地热系统—羊八井热田基本物征[J]. 石油知识,2002(4):4−6.
DUO Ji. Typical high temperature geothermal system-basic features of Yangbajing geothermal field[J]. Petroleum knowledge,2002(4):4−6.
[9] 侯增谦,李振清,曲晓明,等. 0.5 Ma以来的青藏高原隆升过程:来自冈底斯带热水活动的证据[J]. 中国科学(D 辑):地球科学,2001,31(增刊1):27–33.
HOU Zengqian,LI Zhenqing,QU Xiaoming,et al. The uplifting processes of the Tibetan Plateau since 0.5 Ma BP:Evidence from hydrothermal activity in the Gangdise Belt[J]. Science in China Series D:Earth Sciences,2001,31(Sup.1):27–33.
[10] 魏帅超,张薇,付勇,等. 我国地热水中锂元素分布特征及资源开发利用[J/OL]. 中国地质,2024:1–32 [2024-01-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20230505.1132.012.html.
WEI Shuaichao,ZHANG Wei,FU Yong,et al. Distribution characteristics and resource potential evaluation of lithium in geothermal water in China[J/OL]. Geology in China,2024:1–32 [2024-01-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20230505.1132.012.html.
[11] 王晨光,郑绵平,张雪飞,等. 青藏高原南部地热型锂资源[J]. 科技导报,2020,38(15):24−36.
WANG Chenguang,ZHENG Mianping,ZHANG Xuefei,et al. Geothermal–type lithium resources in southern Tibetan Plateau[J]. Science & Technology Review,2020,38(15):24−36.
[12] 王登红,代鸿章,刘善宝,等. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报,2022,28(5):743−764.
WANG Denghong,DAI Hongzhang,LIU Shanbao,et al. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics,2022,28(5):743−764.
[13] GUPTA H K,ROY S. Geothermal energy:An alternative resource for the 21st century[M]. Amsterdam:Elsevier,2007.
[14] 赵平,多吉,谢鄂军,等. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报,2003,19(3):569−576.
ZHAO Ping,DUO Ji,XIE Ejun,et al. Strontium isotope data for thermal waters in selected high–temperature geothermal fields,China[J]. Acta Petrologica Sinica,2003,19(3):569−576.
[15] 张煜道,谭红兵,丛培鑫,等. 西藏羊八井–当雄断裂带地热系统B、Li、Rb、Cs富集机制[J/OL]. 沉积学报,2024:1–18 [2024-01-31]. https://doi.org/10.14027/j.issn.1000–0550.2022.129.
ZHANG Yudao,TAN Hongbing,CONG Peixin,et al. Enrichment mechanism of B,Li,Rb,and Cs in the geothermal system of Yangbajing–Dangxiong rift,Tibet[J/OL]. Acta Sedimentologica Sinica,2024:1–18 [2024-01-31]. https://doi.org/10.14027/j.issn.1000–0550.2022.129.
[16] BIRKLE P,MERKEL B,PORTUGAL E,et al. The origin of reservoir fluids in the geothermal field of Los Azufres,Mexico:Isotopical and hydrological indications[J]. Applied Geochemistry,2001,16(14):1595−1610.
[17] 刘爱利,王培法,丁园圆. 地统计学概论[M]. 北京:科学出版社,2012.
[18] 郑新奇,吕利娜. 地统计学(空间统计分析)[M]. 北京:科学出版社,2018.
[19] MOUKANA J A,ASAUE H,KOIKE K. Co–kriging for modeling shallow groundwater level changes in consideration of land use/land cover pattern[J]. Environmental Earth Sciences,2013,70(4):1495−1506.
[20] NIKROO L,KOMPANI–ZARE M,SEPASKHAH A R,et al. Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran[J]. Environmental Monitoring and Assessment,2010,166(1/2/3/4):387−407.
[21] KUMAR V. Kriging of groundwater levels:A case study[J]. Journal of Spatial Hydrology,2006,6(1):80−92.
[22] SHAHROKHNIA M A,SEPASKHAH A R,JAVAN M. Estimation of hydraulic parameters for Karoon river by cokriging and residual kriging[J]. Iranian Journal of Science and Technology,2004,28(B1):153−163.
[23] SCHMIDT N. Genesis and distribution of lithium enriched pore brines at the Salar de Uyuni,Bolivia[J]. Freiberg Online Geoscience,2020,57:1−156.
[24] LE N D,ZIDEK J V. Statistical analysis of environmental space–time processes[M]. New York:Springer Verlag,2006.
[25] ARMIJO R,TAPPONIER P,MERCIER J L,et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research:Solid Earth,1986,91(B14):13803−13872.
[26] 吴中海,叶培盛,王成敏,等. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学(中国地质大学学报),2015,40(10):1621−1642.
WU Zhonghai,YE Peisheng,WANG Chengmin,et al. The relics,ages and significance of prehistoric large earthquakes in the Angang Graben in south Tibet[J]. Earth Science (Journal of China University of Geosciences),2015,40(10):1621−1642.
[27] HA Guanghao,WU Zhonghai,LIU Feng. Late Quaternary vertical slip rates along the southern Yadong–Gulu rift,southern Tibetan Plateau[J]. Tectonophysics,2019,755:75−90.
[28] 孙红丽,马峰,刘昭,等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学,2015,35(1):251−259.
SUN Hongli,MA Feng,LIU Zhao,et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science,2015,35(1):251−259.
[29] 吴珍汉,胡道功,刘崎胜,等. 西藏当雄地区构造地貌及形成演化过程[J]. 地球学报,2002,23(5):423−428.
WU Zhenhan,HU Daogong,LIU Qisheng,et al. The formation and evolution of tectonic landform of Damxung area in central Tibetan Plateau[J]. Acta Geoscientia Sinica,2002,23(5):423−428.
[30] 吴珍汉,胡道功,吴中海,等. 西藏羊八井–当雄–谷露地堑的地质特征与形成时代[C]//青藏高原地质过程与环境灾害效应文集. 北京:地震出版社,2005:228−234.
[31] 高洪雷,胡志华,万汉平,等. 西藏谷露地热田地热地质特征[J]. 地球科学,2023,48(3):1014−1029.
GAO Honglei,HU Zhihua,WAN Hanping,et al. Characteristics of geothermal geology of the Gulu geothermal field in Tibet[J]. Earth Science,2023,48(3):1014−1029.
[32] 赵文津. 喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M]. 北京:地质出版社,2001.
[33] 赵文津,赵逊,史大年,等. 喜马拉雅和青藏高原深剖面 (INDEPTH) 研究进展[J]. 地质通报,2002,21(11):691−700.
ZHAO Wenjin,ZHAO Xun,SHI Danian,et al. Progress in the study of deep (INDEPTH) profiles in the Himalayas and Qinghai–Tibet Plateau[J]. Geologcal Bulletin of China,2002,21(11):691−700.
[34] BROWN L D,ZHAO W,NELSON K D,et al. Bright spots,structure,and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science,1996,274(5293):1688−1690.
[35] 张萌,蔺文静,刘昭,等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版),2014,41(3):382−392.
ZHANG Meng,LIN Wenjing,LIU Zhao,et al. Hydrogeochemical characteristics and genetic model of Gulu high–temperature geothermal system in Tibet,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):382−392.
[36] 佟伟,廖志杰,刘时彬. 西藏温泉志[M]. 北京:科学出版社,1999.
[37] 赵平,金建,张海政,等. 西藏羊八井地热田热水的化学组成[J]. 地质科学,1998,33(1):61−72.
ZHAO Ping,JIN Jian,ZHANG Haizheng,et al. Chemical composition of thermal water in the Yangbajing geothermal field,Tibet[J]. Chinese Journal of Geology,1998,33(1):61−72.
[38] 刘昭,蔺文静,张萌,等. 西藏尼木–那曲地热流体成因及幔源流体贡献[J]. 地学前缘,2014,21(6):356−371.
LIU Zhao,LIN Wenjing,ZHANG Meng,et al. Geothermal fluid genesis and mantle fluids contributions in Nimu–Naqu Tibet[J]. Earth Science Frontiers,2014,21(6):356−371.
[39] 任加国,武倩倩. 水文地球化学基础[M]. 北京:地质出版社,2014.
[40] 张洁,梁杏,刘延锋,等. 基于主成分的协克里金法对地下水砷空间分布预测[J]. 地球科学,2023,48(10):3820−3831.
ZHANG Jie,LIANG Xing,LIU Yanfeng,et al. Co–Kriging method based on principal components to predict spatial distribution of arsenic in groundwater[J]. Earth Science,2023,48(10):3820−3831.
[41] 李卫东. 应用多元统计分析(第二版)[M]. 北京:北京大学出版社,2015.
[42] GROENEVELD R A,MEEDEN G. Measuring skewness and kurtosis[J]. Journal of the Royal Statistical Society:Series D (The Statistician),1984,33(4):391−399.
[43] ZHANG Libo,CHAN L H,GIESKES J M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919,Irminger Basin[J]. Geochimica et Cosmochimica Acta,1998,62(14):2437−2450.
[44] 苏为华. 多指标综合评价理论与方法问题研究[D]. 厦门:厦门大学,2000.
SU Weihua. Research on the theory and methods of multi indicator comprehensive evaluation[D]. Xiamen:Xiamen University,2000.
[45] 郑绵平,王秋霞,多吉. 水热成矿新类型:西藏铯硅华矿床[M]. 北京:地质出版社,1995.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons