•  
  •  
 

Coal Geology & Exploration

Abstract

The Bohai Bay Basin, characterized by high terrestrial heat flow, formation temperatures average of 175℃ at a depth of 5000 m, and reservoirs with lithologies dominated by low-porosity and low-permeability metamorphic and igneous rocks, meets the requirements for the formation of hot dry rock (HDR) resources. Based on geothermal parameters such as terrestrial heat flow, rock thermal conductivity, and heat production rate, this study established a three-dimensional HDR exploitation model with thermo-hydro coupling using the COMSOL software. Furthermore, this study analyzed the effects of spacing between production and reinjection wells, reinjection and production rates, and well arrangement mode on the temperature evolution of the geothermal reservoir with exploitation time within 100 a. Accordingly, it selected the optimal scheme and estimated the potential HDR resources. Key findings are as follows: (1) Under certain reinjection and production rates, the rate of decline in production well water temperature over time is inversely proportional to injection and exploitation well spacing. (2) Under a certain well spacing, higher reinjection and production rates were associated with a quicker decrease in the water temperature of production wells and earlier thermal breakthroughs. (3) Regarding well arrangement mode, the HDR exploitation using two production wells and two reinjection wells yielded more heat and higher efficiency than that using one production well and one reinjection well providing other conditions remained unchanged. Based on these results, the optimal HDR exploitation scheme was determined, consisting of an exploitation duration of 50 a, a well spacing of 400 m, reinjection and production rates of 90 m3/h, and well arrangement mode comprising two production wells and two reinjection wells. Using this scheme, the average water temperature of the production wells will be 172℃, corresponding to total recoverable resources of 3.28×1019 J/a of the entire Bohai Bay Basin. For instance, in Renqiu City of Hebei Province, which falls within the delineated HDR favorable area, the heating demands of the entire city can be met using merely 157.75 km2 of HDR favorable area if the optimal HDR exploitation scheme is adopted, as calculated based on a heat load index of residential buildings of 100 W/m2. Therefore, the exploitation and utilization of HDR resources in the study area can enhance the energy supply and guarantee capabilities of North China, contributing to the creation of a sustainable, green, and low-carbon energy system.

Keywords

hot dry rock (HDR), numerical simulation, delineation of favorable area, exploitation scheme optimization, geothermal resource estimation, Bohai Bay Basin

DOI

10.12363/issn.1001-1986.23.07.0435

Reference

[1] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):1366−1381.

LIN Wenjing,WANG Guiling,SHAO Jingli,et al. Distribution and exploration of hot dry rock resources in China:Progress and inspiration[J]. Acta Geologica Sinica,2021,95(5):1366−1381.

[2] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[C]//中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编. 北京:工程地质与水资源研究室,2013:536–542.

[3] 王贵玲,蔺文静,刘峰,等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报,2023,97(3):639−660.

WANG Guiling,LIN Wenjing,LIU Feng,et al. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice[J]. Acta Geologica Sinica,2023,97(3):639−660.

[4] 许传杰,张军,张玲,等. 山东省干热岩地热资源潜力估算[J]. 山东国土资源,2021,37(10):44−50.

XU Chuanjie,ZHANG Jun,ZHANG Ling,et al. Estimation of geothermal resource potential of dry hot rock in Shandong Province[J]. Shandong Land and Resources,2021,37(10):44−50.

[5] 许天福,张炜. 增强型地热工程国际发展和我国前景展望[J]. 石油科学通报,2016,1(1):38−44.

XU Tianfu,ZHANG Wei. Enhanced Geothermal Systems:International developments and China’s prospects[J]. Petroleum Science Bulletin,2016,1(1):38−44.

[6] 上官拴通. 马头营区干热岩地热资源赋存分布特征及开发利用前景[J]. 能源与环保,2017,39(5):155−159.

SHANGGUAN Shuantong. Occurrence conditions of hot–dry–rock geothermal resources and development prospects in Matouying area[J]. China Energy and Environmental Protection,2017,39(5):155−159.

[7] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31.

WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31.

[8] 龚育龄,王良书,刘绍文,等. 济阳坳陷地温场分布特征[J]. 地球物理学报,2003,46(5):652−658.

GONG Yuling,WANG Liangshu,LIU Shaowen,et al. Distribution characteristics of geotemperature field in Jiyang depression,Shandong,North China[J]. Chinese Journal of Geophysics,2003,46(5):652−658.

[9] 王贵玲,张薇,蔺文静,等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质,2017,44(6):1074−1085.

WANG Guiling,ZHANG Wei,LIN Wenjing,et al. Research on formation mode and development potential of geothermal resources in Beijing–Tianjin–Hebei region[J]. Geology in China,2017,44(6):1074−1085.

[10] ALIYU M D,ARCHER R A. A thermo–hydro–mechanical model of a hot dry rock geothermal reservoir[J]. Renewable Energy,2021,176:475−493.

[11] WANG Zhuting,ZHANG Chao,JIANG Guangzheng,et al. Effect of different exploitation schemes on production performance from the carbonate reservoir:A case study in Xiong’an New Area[J]. Journal of Cleaner Production,2021,314:128050.

[12] 刘汉青,胡才博,赵桂萍,等. 利用热–孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程:以青海共和盆地恰卜恰地区干热岩开发为例[J]. 地球物理学报,2023,66(7):2887−2902.

LIU Hanqing,HU Caibo,ZHAO Guiping,et al. Thermal–hydraulic finite element simulation of temperature decrease process during hot dry rock exploitation:A case study in the Qiabuqia area,Gonghe Basin,Qinghai Province[J]. Chinese Journal of Geophysics,2023,66(7):2887−2902.

[13] 岳高凡,邓晓飞,邢林啸,等. 共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报,2015,33(19):62−67.

YUE Gaofan,DENG Xiaofei,XING Linxiao,et al. Numerical simulation of hot dry rock exploitation using enhanced geothermal systems in Gonghe Basin[J]. Science & Technology Review,2015,33(19):62−67.

[14] 雷宏武,金光荣,李佳琦,等. 松辽盆地增强型地热系统(EGS)地热能开发热–水动力耦合过程[J]. 吉林大学学报(地球科学版),2014,44(5):1633−1646.

LEI Hongwu,JIN Guangrong,LI Jiaqi,et al. Coupled thermal–hydrodynamic processes for geothermal energy exploitation in Enhanced Geothermal System at Songliao Basin,China[J]. Journal of Jilin University (Earth Science Edition),2014,44(5):1633−1646.

[15] 周琦杰,刘永江,王德英,等. 渤海湾中部中、新生代构造演化与潜山的形成[J]. 地学前缘,2022,29(5):147−160.

ZHOU Qijie,LIU Yongjiang,WANG Deying,et al. Mesozoic–Cenozoic tectonic evolution and buried hill formation in central Bohai Bay[J]. Earth Science Frontiers,2022,29(5):147−160.

[16] CUI Yue,ZHU Chuanqing,QIU Nansheng,et al. The heat source origin of geothermal resources in Xiong’an New Area,North China,in view of the influence of igneous rocks[J]. Frontiers in Earth Science,2022,10:818129.

[17] 许威. 渤海湾盆地中–新生代热体制与岩石圈减薄研究[D]. 北京:中国石油大学(北京),2017.

XU Wei. Meso–Cenozoic thermal regime and lithospheric thinning in the Bohai Bay Basin[D]. Beijing:China University of Petroleum (Beijing),2017.

[18] JIANG Guangzheng,WANG Yi,SHI Yizuo,et al. Estimate of hot dry rock geothermal resource in Daqing oilfield,northeast China[J]. Energies,2016,9(10):731.

[19] 张英,冯建赟,罗军,等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘,2020,27(1):35−47.

ZHANG Ying,FENG Jianyun,LUO Jun,et al. Screening of hot dry rock in the south–central part of the Bohai Bay Basin[J]. Earth Science Frontiers,2020,27(1):35−47.

[20] 龚育龄,王良书,刘绍文,等. 中国东部渤海湾盆地热结构和热演化[M]. 北京:中国原子能出版社,2011.

[21] 阎敦实,于英太. 京津冀油区地热资源评价与利用[M]. 武汉:中国地质大学出版社,2000.

[22] 董月霞,黄红祥,任路,等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践:以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发,2021,48(3):666−676.

DONG Yuexia,HUANG Hongxiang,REN Lu,et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin:A case of the Caofeidian geothermal heating project in Tangshan,China[J]. Petroleum Exploration and Development,2021,48(3):666−676.

[23] 蒋林,季建清,徐芹芹. 渤海湾盆地应用增强型地热系统(EGS)的地质分析[J]. 地质与勘探,2013,49(1):167−178.

JIANG Lin,JI Jianqing,XU Qinqin. Geologic analysis on the prospects of the Enhanced Geothermal System (EGS) in the Bohai Bay Basin[J]. Geology and Exploration,2013,49(1):167−178.

[24] MUFFLER P,CATALDI R. Methods for regional assessment of geothermal resources[J]. Geothermics,1978,7(2/3/4):53−89.

[25] 樊冬艳,孙海,姚军,等. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版),2019,49(3):797−806.

FAN Dongyan,SUN Hai,YAO Jun,et al. Parametric analysis of different injection and production well pattern in Enhanced Geothermal System[J]. Journal of Jilin University (Earth Science Edition),2019,49(3):797−806.

[26] ZINSALO J M,LAMARCHE L,RAYMOND J. Sustainable electricity generation from an Enhanced Geothermal System considering reservoir heterogeneity and water losses with a discrete fractures model[J]. Applied Thermal Engineering,2021,192:1−20.

[27] ALIYU M D,CHEN Huapeng. Optimum control parameters and long–term productivity of geothermal reservoirs using coupled thermo–hydraulic process modelling[J]. Renewable Energy,2017,112(10):151−165.

[28] 何朋朋. 含水层水热运移试验研究[D]. 北京:中国地质大学(北京),2011.

HE Pengpeng. Experimental study of groundwater flow and heat transfer in aquifers[D]. Beijing:China University of Geosciences (Beijing),2011.

[29] POLA M,CACACE M,FABBRI P,et al. Fault control on a thermal anomaly:Conceptual and numerical modeling of a low–temperature geothermal system in the southern Alps Foreland Basin (NE Italy)[J]. Journal of Geophysical Research:Solid Earth,2020,125(5):e2019JB017394.

[30] SHAIK A R,RAHMAN S S,TRAN N H,et al. Numerical simulation of fluid–rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering,2011,31(10):1600−1606.

[31] 董晓飞,胡成,曹孟雄,等. 裂隙介质渗透性的升尺度转换研究[J]. 地质科技通报,2023,42(4):259−267.

DONG Xiaofei,HU Cheng,CAO Mengxiong,et al. Study on the upscaling transformation of hydraulic conductivity in fractured media[J]. Bulletin of Geological Science and Technology,2023,42(4):259−267.

[32] 杨吉龙,胡克. 干热岩(HDR)资源研究与开发技术综述[J]. 世界地质,2001,20(1):43−51.

YANG Jilong,HU Ke. A review of hot dry rock (HDR) research and development in the world[J]. World Geology,2001,20(1):43−51.

[33] ZHU Chuanqing,CHEN Chi,JIANG Xiaoxue. Numerical simulation of internal factors that influence the thermal conductivity of rock[J]. International Journal of Thermophysics,2022,44(2):24.

[34] 尚宏波,赵春虎,靳德武,等. 中深层地热单井换热数值计算[J]. 煤田地质与勘探,2019,47(6):159−166.

SHANG Hongbo,ZHAO Chunhu,JIN Dewu,et al. Numerical calculation of heat transfer in single medium–deep geothermal well[J]. Coal Geology & Exploration,2019,47(6):159−166.

[35] 丁蕊,朱传庆,曹倩,等. 河间潜山地热资源开发方案数值模拟[J]. 地球学报,2023,44(1):248−256.

DING Rui,ZHU Chuanqing,CAO Qian,et al. Numerical simulation of buried hill geothermal resources exploitation in Hejian area[J]. Acta Geoscientica Sinica,2023,44(1):248−256.

[36] 龚育龄. 中国东部渤海湾盆地热结构和热演化[D]. 南京:南京大学,2003.

GONG Yuling. Geothermal structure and thermal evolution in Bohai Bay Basin,eastern China[D]. Nanjing:Nanjing University,2003.

[37] 郤保平,赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报,2010,29(5):892−898.

XI Baoping,ZHAO Yangsheng. Experimental research on mechanical properties of water–cooled granite under high temperatures within 600℃[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):892−898.

[38] 陈炫沂,姜振蛟,徐含英,等. 共和盆地干热岩体人工裂隙带结构的控热机理与产能优化[J]. 水文地质工程地质,2022,49(1):191−199.

CHEN Xuanyi,JIANG Zhenjiao,XU Hanying,et al. Heat control mechanism and productivity optimization of artificial fracture zone structure of dry hot rock in Gonghe Basin[J]. Hydrogeology & Engineering Geology,2022,49(1):191−199.

[39] ASAI P,PANJA P,MCLENNAN J,et al. Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)[J]. Energy,2019,175:667−676.

[40] KADYLAK D,CAVE P,MERIDA W. Effectiveness correlations for heat and mass transfer in membrane humidifiers[J]. International Journal of Heat and Mass Transfer,2009,52(5/6):1504−1509.

[41] 中华人民共和国自然资源部. 地热资源评价方法及估算规程:DZ/T 0331—2020[S]. 北京:地质出版社,2020.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.