Coal Geology & Exploration
Abstract
For the development and utilization of complex marine and continental oil and gas resources, and some problems of heterogeneity and uncertainty inevitably encountered during the drilling under complex geological conditions, it is urgent to create opportunities for the development of intelligent drilling technology and equipment using the high-end information such as artificial intelligence, big data and machine learning. Herein, the intelligent drilling system and its basic components were described, mainly including the field surface intelligent control platform, the data measurement communication control network system, the downhole intelligent steering drilling system and the remote real-time intelligent control center system. Besides, the development status of intelligent drilling equipment at home and abroad, such as the intelligent drilling rigs, intelligent drill pipes, intelligent drill bits and intelligent drilling analysis platforms, were systematically summarized, and the intelligent development potential of the intelligent directional drilling technology, intelligent coring technology, intelligent drilling fluid technology, micro-hole drilling technology and unmanned drilling was predicted. In the context of a new round of energy revolution and industrial transformation, the accelerated integration of drilling technology and equipment with the emerging information technologies will promote the development of drilling technology and equipment in a more intelligent and unmanned direction, thereby realizing the automation of the entire drilling process. The application of intelligent drilling equipment and technology can improve the drilling efficiency and safety, reduce the impact on the environment, and further promote the development of energy revolution and industrial transformation. At the same time, an effective low-carbon development plan and implementation plan was formulated, to comprehensively promote the innovation and iterative optimization of intelligent drilling technology, equipment and supporting software, accelerate the construction of high-end intelligent platforms, and continuously improve their support and guarantee capabilities for the exploration and development. In this paper, the intelligent drilling equipment and technology was systematically discussed, so as to provide some reference and inspiration for the scientific research and technological development of intelligent geological drilling in China.
Keywords
intelligent drilling, intelligent drilling rig, intelligent directional drilling, intelligent coring, automation, unmanned drilling
DOI
10.12363/issn.1001-1986.23.06.0324
Recommended Citation
ZHANG Xinxin, LIANG Bowen, ZHANG Xiaolong,
et al.
(2023)
"Research progress of intelligent drilling equipment and technology,"
Coal Geology & Exploration: Vol. 51:
Iss.
9, Article 15.
DOI: 10.12363/issn.1001-1986.23.06.0324
Available at:
https://cge.researchcommons.org/journal/vol51/iss9/15
Reference
[1] 郭旭涛. 智能钻井技术研究现状[J]. 现代工业经济和信息化,2022,12(3):150−151.
GUO Xutao. Research status of intelligent drilling technology[J]. Modern Industrial Economy and Informatization,2022,12(3):150−151.
[2] 薛倩冰,张金昌. 智能化自动化钻探技术与装备发展概述[J]. 探矿工程 (岩土钻掘工程),2020,47(4):9−14.
XUE Qianbing,ZHANG Jinchang. Advances in intelligent automatic drilling technologies and equipment[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(4):9−14.
[3] 杨传书,张好林,肖莉. 自动化钻井关键技术进展与发展趋势[J]. 石油机械,2017,45(5):10−17.
YANG Chuanshu,ZHANG Haolin,XIAO Li. Key technical progress and development trend of automated drilling[J]. China Petroleum Machinery,2017,45(5):10−17.
[4] 刘清友. 若干智能钻井装备发展现状及应用前景分析:以四川盆地页岩气开发为例[J]. 钻采工艺,2022,45(1):1−10.
LIU Qingyou. Development status and application prospect for several intelligent drilling equipment:A case study of shale gas development in Sichuan Basin[J]. Drilling and Production Technology,2022,45(1):1−10.
[5] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.
LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.
[6] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1−8.
LI Gensheng,SONG Xianzhi,TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques,2020,48(1):1−8.
[7] 闫铁,许瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15−21.
YAN Tie,XU Rui,LIU Weikai,et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University,2020,44(4):15−21.
[8] EPIROC. Our range of surface core drilling machines[EB/OL]. [2020-06-25] (2023-07-18). https://www.epiroc.cn/en–cn/products/drill–rigs/exploration–drill–rigs/core–drilling–rigs.
[9] SANDVIK. LEOPARDTM DI650i The leader of the new era[EB/OL]. [2018-11-01] (2023-07-18). https://www.rocktechnology sandvik.
[10] 张金昌,尹浩,刘凡柏,等. 自动化智能化地质岩芯钻探技术装备研发与应用[J]. 地质论评,2022,68(4):1382−1392.
ZHANG Jinchang,YIN Hao,LIU Fanbai,et al. Development and application of intelligent and automatic drilling technology and equipment[J]. Geological Review,2022,68(4):1382−1392.
[11] 梁春苗. 煤矿用钻孔机器人自动加杆识别与钻臂定位误差补偿研究[D]. 北京:煤炭科学研究总院,2022.
LIANG Chunmiao. Study on recognition of automatic drill pipe–adding and positioning error compensation of drilling boom for the drilling robot in coal mine[D]. Beijing:China Coal Research Institute,2022.
[12] CALDERONI A,CERCATO M. Drillmec ahead:A new generation of fully automated drilling rig forward designed to meet highest HSE standards and drilling efficiency[C]//Offshore Mediterranean Conference and Exhibition. Ravenna:2015.
[13] 姚克,田宏亮,姚宁平,等. 煤矿井下钻探装备技术现状及展望[J]. 煤田地质与勘探,2019,47(1):1−5.
YAO Ke,TIAN Hongliang,YAO Ningping,et al. Present situation and prospect of drilling equipment technology in coal mine[J]. Coal Geology & Exploration,2019,47(1):1−5.
[14] JELLISON M J,HALL D R,HOWARD D C,et al. Telemetry drill pipe:Enabling technology for the downhole internet[C]//SPE/IADC Drilling Conference. Amsterdam:2003.
[15] JELLISON M J,PRIDECO G,HALL D R. Intelligent drill pipe creates the drilling network[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Jakarta:2003.
[16] CHRIS C. Wired–drillpipe technology in a deep ultradepleted reservoir[J]. Journal of Petroleum Technology,2014,66(6):101−103.
[17] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22−28.
SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22−28.
[18] BUTT J,SADEGHI–ESFAHLANI S,SHIRVANI H. Subtractive and additive manufacturing applied to drilling systems[J]. Advances in Terrestrial Drilling:Ground,Ice,and Underwater,2020:39.
[19] CHEN S L,PROPES C,LANNING C,et al. Mechanisms and mitigation of 3D coupled vibrations in drilling with PDC bits[C]//SPE Annual Technical Conference and Exhibition. Richardson:2021.
[20] HALLIBURTON. Cerebro force in–bit sensing[EB/OL]. [2021-09-28] (2023-07-18). https://cdn.brandfolder.io/IMT6VIR6/as/qe4yjr–5wk0zs–eefq9p/Cerebro Force In–Bit Sensing Sales Data Sheet.pdf.
[21] BAKERHUGHES. MultiSense 2. 0 dynamics mapping system[EB/OL]. [2021-09-28] (2023-07-18). https://dam.bakerhughes.com/m/19df3a731e4f63d7/original/multisense 2–0–dynamics mapping–system–slsh.pdf.
[22] RICHARD S. Geosteering CTD,using the drill bit as a sensor[EB/OL]. [2018-04-26] (2023-07-18). https://www.antech.co.uk/geosteering–ctd–using–the–drill–bit–as–a–sensor.html.
[23] 崔奕,汪海阁,丁燕,等. 碳中和愿景下油气钻井的数字化、智能化转型之路[J]. 石油钻采工艺,2022,44(6):769−776.
CUI Yi,WANG Haige,DING Yan,et al. Routes of digital and intelligent transformation for petroleum drilling with a vision of carbon neutrality[J]. Oil Drilling & Production Technology,2022,44(6):769−776.
[24] HALLIBURTON. Halliburton 4. 0:Digital gateway to opennew possibilities[EB/OL]. [2022-10-18] (2023-07-18). https://www.halliburton.com/en/hal1iburton–4–0.
[25] 曾涛,刘晗光,高坚. 斯伦贝谢公司数字化转型的经验与启示[J]. 国际石油经济,2021,29(1):94−99.
ZENG Tao,LIU Hanguang,GAO Jian. Experience and inspiration from Schlumberger’s digital transition[J]. International Petroleum Economics,2021,29(1):94−99.
[26] 罗光强,李扬,周策,等. 深孔智能化钻井参数远程监控及工况识别系统研究[J]. 地质与勘探,2022,58(3):696−706.
LUO Guangqiang,LI Yang,ZHOU Ce,et al. Intelligent remote monitoring and the work-condition identification system for deep drilling[J]. Geology and Exploration,2022,58(3):696−706.
[27] 汤小仁,孟义泉,訾兵,等. 钻探参数实时采集系统研制与应用[J]. 探矿工程 (岩土钻掘工程),2020,47(6):46−53.
TANG Xiaoren,MENG Yiquan,ZI Bing,et al. Development and application of the real time acquisition system for drilling parameters[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(6):46−53.
[28] 王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺,2018,41(2):37−41.
WANG Zhirui,WANG Junliang. Development of foreign rotary steerable technology and domestic status[J]. Drilling & Production Technology,2018,41(2):37−41.
[29] FEI L,XUE Y M,YU Q T. Comparison study of leading rotary steerable system and future development trend[C]//Journal of Physics:Conference Series. IOP Publishing,2021,1894(1):012015.
[30] 赵永哲. 煤矿区煤层气水平对接井轨迹控制与完井技术研究[D]. 北京:煤炭科学研究总院,2017.
ZHAO Yongzhe. Study on trajectory control and well completion technology for CBM horizontally–intersected well in coal mining areas[D]. Beijing:China Coal Research Institute,2017.
[31] BONNER S,FREDETTE M,LOVELL J,et al. Resistivity while drilling–images from the string[J]. Oilfield Review,1996,8(1):4−19.
[32] FJELLHEIM R A,HERBERT M,ARILD O,et al. Collaboration and decision support in geosteering[C]//SPE Intelligent Energy Conference and Exhibition. Utrecht:2010.
[33] SCHLUMBERGER. WellEye 3D borehole data viewer[EB/OL]. [2003-11-28] (2023-07-18). https://www.slb.com/–/media/files/fe/product–sheet/welleye–ps. ashx.
[34] JACOBS A. Norwegian firm adds smarts to offshore coring[EB/OL]. [2018-05-07] (2023-07-18). https://jpt.spe.org/norwegian–firm–adds–smarts–offshore–coring
[35] 朱恒银,王强,刘兵,等. 5000 m新型能源勘探智能钻探装备与技术研究[J]. 钻探工程,2022,49(1):110−119.
ZHU Hengyin,WANG Qiang,LIU Bing,et al. Research on 5000m new energy exploration intelligent drilling equipment and technology[J]. Drilling Engineering,2022,49(1):110−119.
[36] HALLIBURTON. CoreVault rock−fluid−pressure (RFP) sampling service[EB/OL]. [2020-12-20] (2023-07-18). https://www.halliburton.com/en/products/corevault–rfp–system
[37] 张伟. 深孔岩心钻探技术问题探讨和发展展望[J]. 探矿工程 (岩土钻掘工程),2013,40(增刊1):1−6.
ZHANG Wei. Exploration and development prospects of deep hole core drilling technology[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2013,40(Sup.1):1−6.
[38] 向军文,向昆明,张新刚,等. 绳索定向造斜及取心技术应用[J]. 探矿工程 (岩土钻掘工程),2009,36(8):18−21.
XIANG Junwen,XIANG Kunming,ZHANG Xingang,et al. Application of wire−line directional drilling and coring technology[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2009,36(8):18−21.
[39] 潘一,徐明磊,郭永成,等. 智能钻井液的化学体系及辅助系统研究进展[J]. 精细化工,2020,37(11):2246−2254.
PAN Yi,XU Minglei,GUO Yongcheng,et al. Research progress on chemical system and auxiliary system of intelligent drilling fluids[J]. Fine Chemicals,2020,37(11):2246−2254.
[40] 蒋官澄,董腾飞,崔凯潇,等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577−585.
JIANG Guancheng,DONG Tengfei,CUI Kaixiao,et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development,2022,49(3):577−585.
[41] ABDELGAWAD K Z,ELKATATNY S,MOUSA T,et al. Real time determination of rheological properties of spud drilling fluids using a hybrid artificial intelligence technique[J]. Journal of Energy Resources Technology,2019,141(3):1−31.
[42] 段友祥,张洋弘,李洪强,等. 基于可信度分析的钻井液脉冲信号识别方法[J]. 石油钻探技术,2018,46(3):120−126.
DUAN Youxiang,ZHANG Yanghong,LI Hongqiang,et al. A new drilling fluid pulse signal identification method based on credibility analysis[J]. Petroleum Drilling Techniques,2018,46(3):120−126.
[43] 何宏,靳世久,朱先伟. 基于智能传感器技术钻井液密度检测的研究[J]. 电子测量与仪器学报,2005,19(5):37−40.
HE Hong,JIN Shijiu,ZHU Xianwei. Study of drilling fluid density detection based on intelligent sensor[J]. Journal of Electronic Measurement and Instrument,2005,19(5):37−40.
[44] 倪朋勃,荆文明,袁胜斌. 新型智能录井系统在优化钻井工程中的应用[J]. 录井工程,2017,28(4):79−84.
NI Pengbo,JING Wenming,YUAN Shengbin. New intelligent logging system in optimization of drilling engineering[J]. Mud Logging Engineering,2017,28(4):79−84.
[45] 徐超. 基于范例推理的钻井液配方专家系统的研究[J]. 石油工业计算机应用,2015(1):35−37.
XU Chao. Research on expert system of drilling fluid formulation based on case–based reasoning[J]. Computer Applications of Petroleum,2015(1):35−37.
[46] MAGALHAES S C,BORGES R F O,CALCADA L A,et al. Development of an expert system to remotely build and control drilling fluids[J]. Journal of Petroleum Science and Engineering,2019,181:106033.
[47] ALBRIGHT J,ANDERSON D,BLACIC J,et al. Road map for a 5000–ft microborehole[R]. New Mexico:Los Alamos National Laboratory,2003.
[48] SU J,MAZUMDAR A,BUERGER S,et al. Evaluation of microhole drilling technology for geothermal exploration,assessment,and monitoring[R]. New Mexico:Sandia National Laboratories,2021.
[49] 黄志强,陈勋,施连海,等. 微小井眼径向钻孔技术研究新进展及分析[J]. 钻采工艺,2020,43(3):27−30.
HUANG Zhiqiang,CHEN Xun,SHI Lianhai,et al. Research development and analysis of micro–hole radial drilling technology[J]. Drilling & Production Technology,2020,43(3):27−30.
[50] WWT. WWT has expanded its coiled tubing tool portfolio by introducing 3 new tools to our full line of coiled tubing tractors[EB/OL]. [2021-09-14] (2023-07-18). https://www.wwtco.com/news/wwt–has–expanded–its–coiled–tubing–tool–portfolio–by–introducing–3–new–tools–to–our–full–line–of–coiled–tubing–tractors.
[51] 肖晓华,代继樑,朱海燕,等. 钻井机器人偏心流道冲蚀实验及数值模拟研究[J]. 西南石油大学学报(自然科学版),2021,43(2):167−177.
XIAO Xiaohua,DAI Jiliang,ZHU Haiyan,et al. Experimental and numerical simulation research on eccentric flow channel erosion of drilling robot[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(2):167−177.
[52] 刘清友,董润,耿凯,等. 井下机器人研究进展与应用展望[J]. 石油钻探技术,2019,47(3):50−55.
LIU Qingyou,DONG Run,GENG Kai,et al. The status of current research on downhole robots and their multiple applications[J]. Petroleum Drilling Techniques,2019,47(3):50−55.
[53] 王志刚,胡志兴,李小洋,等. 水力喷射微小井眼技术用于海域水合物钻探的可行性分析[J]. 探矿工程 (岩土钻掘工程),2020,47(2):30−35.
WANG Zhigang,HU Zhixing,LI Xiaoyang,et al. Feasibility of application of hydraulic jet micro–borehole technology to marine hydrate drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(2):30−35.
[54] FINSTERLE S,ZHANG Yingqi,PAN Lehua,et al. Microhole arrays for improved heat mining from enhanced geothermal systems[J]. Geothermics,2013,47:104−115.
[55] COHEN N,XPLORE T. These drones are landing,drilling holes,and taking off again[EB/OL]. [2019-01-10] (2023-07-18). https://techxplore.com/news/2019–01–pills–pizza–drones–drilling–holes.html.
[56] 高科,牛鑫,赵研,等. 钻孔救援连续缆管储放设备研制[J]. 煤田地质与勘探,2023,51(3):168−176.
GAO Ke,NIU Xin,ZHAO Yan,et al. Development of storage equipment of continuous cable pipe for borehole rescue[J]. Coal Geology & Exploration,2023,51(3):168−176.
[57] 高科,张聪,赵研,等. 救援钻孔用双钻头扭矩自平衡钻进系统理论与实验[J]. 煤田地质与勘探,2022,50(11):85−93.
GAO Ke,ZHANG Cong,ZHAO Yan,et al. Theory and experiment of the dual–bit torque self–balancing drilling system for rescue drilling[J]. Coal Geology & Exploration,2022,50(11):85−93.
[58] 赵研,艾红欣,高科,等. 双钻头自平衡钻进系统用多通道连续缆管设计[J]. 煤田地质与勘探,2023,51(4):164−169.
ZHAO Yan,AI Hongxin,GAO Ke,et al. Design of multi–channel continuous cable duct for double–bit self–balancing drilling system[J]. Coal Geology & Exploration,2023,51(4):164−169.
[59] TRULS F,ERLING W. System for exploration of subterranean structures:WO2011/054965A2[P]. 2011-05-12.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons