Coal Geology & Exploration


Obtaining the in-situ physical and mechanical parameters of coal-rock mass is the primary task for the development of deep coal resource. Accurate measurement of the in-situ parameters of gas is the basic guarantee to realize the safe mining of coal. In view of the technical challenges of inaccurate measurement of in-situ gas parameters in coal mine, the idea of multi-directional pressure-preserved coring technology based on magnetic force control was proposed with consideration to the technical characteristics of coring in underground coal mines. Specifically, a self-triggered magnetically controlled pressure-preserved controller was designed based on the characteristics of the composite magnetic field. The triggering and sealing structure for coring was optimized. The key pressure-preserved components realized the non-contact self-triggering and self-sealing by magnetic force control, thus improving the fault tolerance of the pressure-preserved trigger. Besides, a test platform functioning for multi-directional pressure-preserved coring was developed independently. With the self-developed test platform, it was verified that the pressure-preserved controller had a good triggering and self-sealing ability at different coring angles. In addition, a magnetically controlled pressure-preserved module was integrated to form a multidirectional pressure-preserved coring device. Moreover, laboratory tests were conducted to verify that the device could realize the pressure-preserved coring in multiple directions, and the pressure-preserved capacity could reach 6 MPa, which meets the condition of pressure-preserved coring in coal mines. The research results provide technical support for the multidirectional pressure-preserved coring in deep coal mines and provide a new idea for the design of pressure-preserved control structure.


in-situ gas, multidirectional pressure-preserved coring, magnetic force control, self-triggering, self-sealing




[1] 谢和平,鞠杨,高明忠,等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(5):1210−1219.

XIE Heping,JU Yang,GAO Mingzhong,et al. Theories and technologies for in−situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,43(5):1210−1219.

[2] 高明忠,刘军军,林文明,等. 特厚煤层超前采动原位应力演化规律研究[J]. 煤炭科学技术,2020,48(2):28−35.

GAO Mingzhong,LIU Junjun,LIN Wenming,et al. Study on in–situ stress evolution law of ultra–thick coal seam in advance mining[J]. Coal Science and Technology,2020,48(2):28−35.

[3] 赵明珍. 河南省主要煤田煤炭资源清洁利用潜势[J]. 煤田地质与勘探,2020,48(2):57−63.

ZHAO Mingzhen. The potential of clean utilization of coal resources in main coalfields of Henan Province[J]. Coal Geology & Exploration,2020,48(2):57−63.

[4] 赵平,谭克龙,韩效忠,等. 新形势下我国能源与生态安全保障研究[J]. 中国煤炭地质,2021,33(1):1−7.

ZHAO Ping,TAN Kelong,HAN Xiaozhong,et al. Research for energy and ecological security in China under new situation[J]. Coal Geology of China,2021,33(1):1−7.

[5] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

[6] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.

XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.

[7] 谢和平,张茹,邓建辉,等. 基于“深地–地表”联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术,2021,53(4):1−12.

XIE Heping,ZHANG Ru,DENG Jianhui,et al. A preliminary study on the technical system of deep earth science and geo disaster prevention–control based on the“deep earth–surface”linkage strategy[J]. Advanced Engineering Sciences,2021,53(4):1−12.

[8] 谢和平,李存宝,高明忠,等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报,2021,40(2):217−232.

XIE Heping,LI Cunbao,GAO Mingzhong,et al. Conceptualization and preliminary research on deep in situ rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):217−232.

[9] 高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报,2020,45(8):2691−2703.

GAO Mingzhong,WANG Mingyao,XIE Jing,et al. In–situ disturbed mechanical behavior of deep coal rock[J]. Journal of China Coal Society,2020,45(8):2691−2703.

[10] 姚宁平,王毅,姚亚峰,等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探,2020,48(2):1−7.

YAO Ningping,WANG Yi,YAO Yafeng,et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration,2020,48(2):1−7.

[11] 孙庆刚. 中国煤矿瓦斯灾害现状与防治对策研究[J]. 中国煤炭,2014,40(3):116−119.

SUN Qinggang. Research on status quo and prevention countermeasures of coal mine gas disaster in China[J]. China Coal,2014,40(3):116−119.

[12] 胡千庭,邹银辉,文光才,等. 瓦斯含量法预测突出危险新技术[J]. 煤炭学报,2007,32(3):276−280.

HU Qianting,ZOU Yinhui,WEN Guangcai,et al. New technology of outburst danger prediction by gas content[J]. Journal of China Coal Society,2007,32(3):276−280.

[13] 邓楠. 煤层瓦斯含量直接测定取样技术研究进展[J]. 矿业安全与环保,2021,48(4):113−117.

DENG Nan. Research status on direct measurement and sampling technology for coal seam gas content[J]. Mining Safety & Environmental Protection,2021,48(4):113−117.

[14] 马尚权,刘博雄,谢宏. 煤层瓦斯含量快速直接测定技术与装置研发[J]. 华北科技学院学报,2022,19(4):111−117.

MA Shangquan,LIU Boxiong,XIE Hong. Development of technology and device for rapid and direct determination of coal seam gas content[J]. Journal of North China Institute of Science and Technology,2022,19(4):111−117.

[15] 魏培瑾. 基于煤层瓦斯含量直接测定方法的煤样尺度效应研究[J]. 能源与节能,2020(7):22−24.

WEI Peijin. Research on the scale effect of coal sample based on the direct measurement method of coal seam gas content[J]. Energy and Energy Conservation,2020(7):22−24.

[16] 李成武,王义林,王其江,等. 直接法瓦斯含量测定结果准确性实验研究[J]. 煤炭学报,2020,45(1):189−196.

LI Chengwu,WANG Yilin,WANG Qijiang,et al. Experimental study on accuracy of direct gas content determination[J]. Journal of China Coal Society,2020,45(1):189−196.

[17] 程波,乔伟,颜文学,等. 煤矿井下煤层瓦斯含量测定方法的研究进展[J]. 矿业安全与环保,2019,46(4):98−103.

CHENG Bo,QIAO Wei,YAN Wenxue,et al. Research progress on determination method of coal seam gas content in coal mine[J]. Mining Safety & Environmental Protection,2019,46(4):98−103.

[18] 黄鹤. 煤层瓦斯含量测定方法优化及现场应用[J]. 现代矿业,2019,35(1):193−196.

HUANG He. Optimization of coal seam gas content determination method and field application[J]. Modern Mining,2019,35(1):193−196.

[19] 俱养社,马峰良,华立. 钻孔瓦斯密闭保压取心器研制及应用[J]. 中国煤炭地质,2022,34(4):79−83.

JU Yangshe,MA Fengliang,HUA Li. Development and application of borehole gas airtight pressurized corer[J]. Coal Geology of China,2022,34(4):79−83.

[20] 芦伟,龙威成,康锴,等. 中硬煤层井下长距离密闭取心瓦斯含量测定技术应用研究[J]. 煤炭技术,2021,40(12):153−156.

LU Wei,LONG Weicheng,KANG Kai,et al. Application of gas content measurement technology for long–distance sealed coring in medium hard coal seam[J]. Coal Technology,2021,40(12):153−156.

[21] 景兴鹏. 机械密闭取芯瓦斯含量测定集成技术研究[J]. 中国安全生产科学技术,2015,11(11):59−63.

JING Xingpeng. Study on integrate technique of mechanical sealed coring and methane content measuring[J]. Journal of Safety Science and Technology,2015,11(11):59−63.

[22] 贵宏伟,李学臣,郭艳飞,等. 千米钻机超深钻孔定点密闭取芯技术研究与应用[J]. 煤炭工程,2018,50(12):54−57.

GUI Hongwei,LI Xuechen,GUO Yanfei,et al. Research and application of fixed−point closed sampling technology for super deep drilling in 1000 m drilling machine[J]. Coal Engineering,2018,50(12):54−57.

[23] 李小洋,张永勤,王汉宝,等. 煤层气调查评价钻探保压取心钻具设计与试制[J]. 地质与勘探,2019,55(4):1045−1050.

LI Xiaoyang,ZHANG Yongqin,WANG Hanbao,et al. Design and trial–manufacture of the pressure−holding core drilling tool for evaluation of coal−seam gas[J]. Geology and Exploration,2019,55(4):1045−1050.

[24] 孙四清,张群,龙威成,等. 煤矿井下长钻孔煤层瓦斯含量精准测试技术及装置[J]. 煤田地质与勘探,2019,47(4):1−5.

SUN Siqing,ZHANG Qun,LONG Weicheng,et al. Accurate test technology and device for coal seam gas content in long boreholes in underground coal mines[J]. Coal Geology & Exploration,2019,47(4):1−5.

[25] 龙威成. 井下煤层长距离定点密闭取心技术及应用研究[J]. 河南理工大学学报(自然科学版),2022,41(1):9−16.

LONG Weicheng. Research of long distance fixed–point sealed coring technology and application in underground coal seam[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(1):9−16.

[26] 杨立文,苏洋,罗军,等. GW–CP194–80A型保压取心工具的研制[J]. 天然气工业,2020,40(4):91−96.

YANG Liwen,SU Yang,LUO Jun,et al. Development and application of GW−CP194−80A pressure−maintaining coring tool[J]. Natural Gas Industry,2020,40(4):91−96.

[27] 朱庆忠,苏雪峰,杨立文,等. GW–CP194–80M型煤层气双保压取心工具研制及现场试验[J]. 特种油气藏,2020,27(5):139−144.

ZHU Qingzhong,SU Xuefeng,YANG Liwen,et al. Development and field test of GW–CP194–80M CBM dual pressure coring tool[J]. Special Oil and Gas Reservoirs,2020,27(5):139−144.

[28] 王西贵,邹德永,杨立文,等. 煤层气保温保压保形取心工具研制及现场应用[J]. 石油钻探技术,2021,49(3):94−99.

WANG Xigui,ZOU Deyong,YANG Liwen,et al. Development and field application of a coalbed methane coring tool with pressure maintenance,thermal insulation,and shape preservation capabilities[J]. Petroleum Drilling Techniques,2021,49(3):94−99.

[29] 卢宗玮,王清峰,李彦明. 密闭取心装置研究现状与解决方案[J]. 煤炭技术,2022,41(5):142−144.

LU Zongwei,WANG Qingfeng,LI Yanming. Research and solution of closed sampling device[J]. Coal Technology,2022,41(5):142−144.

[30] 高明忠,陈领,凡东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897.

GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in–situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.

[31] 谢和平,高明忠,张茹,等. 深部岩石原位“五保”取芯构想与研究进展[J]. 岩石力学与工程学报,2020,39(5):865−876.

XIE Heping,GAO Mingzhong,ZHANG Ru,et al. Study on concept and progress of in situ fidelity coring of deep rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):865−876.

[32] LI Cong,XIE Heping,GAO Mingzhong,et al. Novel designs of pressure controllers to enhance the upper pressure limit for gas–hydrate–bearing sediment sampling[J]. Energy,2021,227:120405.

[33] LIU Guikang,GAO Mingzhong,YANG Zhiwen,et al. The innovative design of deep in situ pressure retained coring based on magnetic field trigger controller[J]. Advances in Civil Engineering,2020,2020:8873628.

[34] 张三慧. 大学物理学:电磁学[M]. 北京:清华大学出版社,2008.

[35] 周寿增,董清飞. 超强永磁体:稀土铁系永磁材料[M]. 北京:冶金工业出版社,2004.

[36] 田靖安,王亮,程远平,等. 煤层瓦斯压力分布规律及预测方法[J]. 采矿与安全工程学报,2008,25(4):481−485.

TIAN Jing’an,WANG liang,CHENG Yuanping,et al. Research on distribution rule and forecast method of gas pressure in coal seam[J]. Journal of Mining and Safety Engineering,2008,25(4):481−485.

[37] 陈文胜,刘震. 淮北宿县矿区朱仙庄矿瓦斯压力分布规律研究[J]. 煤炭技术,2013,32(8):131−133.

CHEN Wensheng,LIU Zhen. Study of gas pressure distribution rule of Zhuxianzhuang Mine of Suxian mining area in Huaibei[J]. Coal Technology,2013,32(8):131−133.

[38] 吴建亭,田慧玲,高建成. 平顶山矿区突出矿井瓦斯压力分布规律研究[J]. 中国煤层气,2014,11(6):3−6.

WU Jianting,TIAN Huiling,GAO Jiancheng. Study on gas pressure distribution in outburst coal mine of Pingdingshan mining area[J]. China Coalbed Methane,2014,11(6):3−6.

[39] 薛熠,刘嘉,梁鑫,等. 瓦斯压力作用下煤岩的声发射非线性演化特征[J]. 岩土工程学报,2021,43(增刊1):241−245.

XUE Yi,LIU Jia,LIANG Xin,et al. Nonlinear evolution characteristics of acoustic emission and fracture mechanism of coal under gas pressure[J]. Chinese Journal of Geotechnical Engineering,2021,43(Sup.1):241−245.

[40] 于世雷,佘九华,张羽,等. 煤层煤与瓦斯突出多指标量化评价方法探讨[J]. 煤炭技术,2022,41(5):119−124.

YU Shilei,SHE Jiuhua,ZHANG Yu,et al. Quantitative risk assessment of coal seam coal and gas outburst hazard[J]. Coal Technology,2022,41(5):119−124.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.