•  
  •  
 

Coal Geology & Exploration

Abstract

To achieve peak carbon dioxide emissions and carbon neutrality in China, a low-carbon and efficient coal energy structure is essential for the sustainable energy development of China. Underground coal gasification (UCG) is an important strategy for transforming the coal energy structure in China. Based on the review of previous literature, this study analyzes the exploration history of the UCG field tests in China and delivers the prospects of UCG industrialization in China. The analytical results show that the development and field tests of UCG technologies in China have experienced five stages, namely the initial attempt, silence/recovery, extensive explorations, making technological breakthroughs, and tests and promotion, laying a solid scientific and technological foundation for a new round of explorations into the UCG industrialization in China. Three achievements have contributed substantially to the development of UCG technology in China as milestones: (1) the success of the first UCG pilot test of mines in Mazhuang, Xuzhou; (2) the invention of the long channel - large cross-section-two stage (LLTS) UCG process; and (3) the success of the UCG field test in wells in Ulanqab, Inner Mongolia. Among them, the LLTS-UCG process is the only internationally recognized innovative achievement in the field of UCG in China. This process breaks through the international limitation on the length of gas flow channels of the time, thus increasing the amount of coal to be gasified by a single furnace and greatly improving the gas production capacity of a single gasifier. Moreover, this process yields high-quality synthetic gas by increasing the single-gasifier daily gas production using large cross-sections and increasing the coal-to-gas conversion rate through two-stage gas injection. The LLTS-UCG process has opened commercial UCG production in China. With simple control methods of the process, the basic philosophy and processes of the process can be used as a reference for the development of UCG technologies for middle-deep coal seams. This study delivers the prospects of UCG industrialization from the aspects of national demand, technological maturity, resource potential, and safeguard measures. Accordingly, some UCG development priorities and suggestions for constructing an industrial policy system are given. The UCG industrialization in China will be concentrated in shallow coal seams in the short term, it is necessary to further explore the regulating mechanism of the UCG process with low damage to the environment and a high coal-to-gas conversion rate and to establish a UCG technology system for complex geological conditions, such as tectonic coal seams and largely thin coal seams. In the long run, it is expected to achieve the UCG industrialization of middle-deep coal seams, for which the key is to develop the collaborative and efficient co-production technology of UCG – CBM (coal bed methane)-carbon capture, utilization, and storage (CCUS) under multi-field coupling conditions. Moreover, it is recommended that the government should formulate a feasible UCG industry policy system, aiming to provide incentive mechanisms and regulatory guarantees for promoting UCG industrialization. The results of this study help boost the confidence to explore UCG industrialization in China. Furthermore, and provide some references for further innovating UCG technologies suitable for the geological conditions of China.

Keywords

China, underground coal gasification (UCG), field test, technological innovation, industrialization prospect

DOI

10.12363/issn.1001-1986.22.12.0985

Reference

[1] 滕吉文,王玉辰,司芗,等. 煤炭、煤层气多元转型是中国化石能源勘探开发与供需之本[J]. 科学技术与工程,2021,21(22):9169−9193.

TENG Jiwen,WANG Yuchen,SI Xiang,et al. Diversified transformation of coal and coalbed methane:China’s fossil energy exploration,development,supply and demand[J]. Science Technology and Engineering,2021,21(22):9169−9193.

[2] 秦勇,易同生,汪凌霞,等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报,2023,48(1):290−306.

QIN Yong,YI Tongsheng,WANG Lingxia,et al. Analysis of geological conditions for risk control of UCG project[J]. Journal of China Coal Society,2023,48(1):290−306.

[3] 葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报,2017,46(4):679−691.

GE Shirong. Chemical mining technology for deep coal resources[J]. Journal of China University of Mining & Technology,2017,46(4):679−691.

[4] 国家能源局,科学技术部. “十四五”能源领域科技创新规划[EB/OL]. (2021-11-29) [2022-12-18]. http://www.gov.cn/zhengce/zhengceku/2022-04/03/content_5683361.htm.

[5] 余力. 煤炭地下气化的过去和未来[J]. 矿业译丛,1990(4):1−7.

YU Li. The past and future of underground coal gasification[J]. Mining Translations,1990(4):1−7.

[6] 余力,余学东. 煤炭地下气化应该为人类的可持续发展做贡献[J]. 煤炭学报,1997,22(增刊1):61−65.

YU Li,YU Xuedong. Contribution to be made by underground gasification to the mankind in sustainable development of economy[J]. Journal of China Coal Society,1997,22(Sup.1):61−65.

[7] 梁杰,王喆,梁鲲,等. 煤炭地下气化技术进展与工程科技[J]. 煤炭学报,2020,45(1):393−402.

LIANG Jie,WANG Zhe,LIANG Kun,et al. Progress and technology of underground coal gasification[J]. Journal of China Coal Society,2020,45(1):393−402.

[8] 韩军,方惠军,喻岳钰,等. 煤炭地下气化产业与技术发展的主要问题及对策[J]. 石油科技论坛,2020,39(3):50−59.

HAN Jun,FANG Huijun,YU Yueyu,et al. Main problems and countermeasures of underground coal gasification industrial and technological development[J]. Petroleum Science and Technology Forum,2020,39(3):50−59.

[9] 杨甫,田涛,段中会. 煤炭地下气化在“渭北老矿区”应用的可行性[J]. 煤炭经济研究,2018,38(5):70−74.

YANG Fu,TIAN Tao,DUAN Zhonghui. Feasibility of underground coal gasification applied in Weibei old mining area[J]. Coal Economic Research,2018,38(5):70−74.

[10] 电联孔准备地下煤气发生炉[J]. 合肥工业大学学报,1959(4):49–56.

Electric connection hole prepares underground gas generator[J]. Journal of Hefei University of Technology,1959(4):49–56.

[11] 余力,秦志宏,梁洁. 马庄煤矿煤炭地下气化试验简介[J]. 中国能源,1989(2):39−45.

YU Li,QIN Zhihong,LIANG Jie. Introduction to underground coal gasification test in Mazhuang Coal Mine[J]. Energy of China,1989(2):39−45.

[12] 余力,张维廉,梁洁. 煤炭地下气化在我国的发展前景[J]. 煤炭转化,1994,17(1):39−45.

YU Li,ZHANG Weilian,LIANG Jie. The development future underground coal gasification in China[J]. Coal Conversion,1994,17(1):39−45.

[13] 余力. 研究与开发煤炭地下气化技术[J]. 科技导报,1995(2):54−56.

YU Li. Research and development of coal underground pneumatolysis[J]. Science and Technology Review,1995(2):54−56.

[14] 余力,刘淑琴. 关于煤炭地下气化新工艺LLTS–UCG 实现商业化应用的思考[J]. 科技导报,2003(2):51−54.

YU Li,LIU Shuqin. Thoughts on commercialization of new technique LLTS–UCG[J]. Science and Technology Review,2003(2):51−54.

[15] 梁杰. 急倾斜煤层地下气化过程稳定性及控制技术的研究[D]. 徐州:中国矿业大学,1997.

LIANG Jie. Research on stability and control technology of underground gasification process in steeply inclined coal seams[D]. Xuzhou:China University of Mining and Technology,1997.

[16] 梁杰. 煤炭地下气化过程稳定性及控制技术[M]. 徐州:中国矿业大学出版社,2002.

[17] 杨兰和,宋全友,李耀娟. 煤炭地下气化工程[M]. 徐州:中国矿业大学出版社,2001.

[18] YANG Lanhe,ZHANG Xing,LIU Shuqin,et al. Field test of large–scale hydrogen manufacturing from underground coal gasification (UCG)[J]. International Journal of Hydrogen Energy,2008,33(4):1275−1285.

[19] 梁杰. 煤炭地下气化技术进展[J]. 煤炭工程,2017,49(8):1−4.

LIANG Jie. Development overview of underground coal gasification technology[J]. Coal Engineering,2017,49(8):1−4.

[20] 于洪军,王成. 新汶矿区煤炭地下气化技术的成功实践与启示[J]. 中国矿业,2001,10(1):57−59.

YU Hongjun,WANG Cheng. Successful practice of underground gasification of coal of Xinwen coal field[J]. China Mining Magazine,2001,10(1):57−59.

[21] 侯子和,郭炳正,庞继禄,等. 煤炭地下气化技术在新汶矿区的应用[J]. 中国煤炭,2002,28(12):14−15.

HOU Zihe,GUO Bingzheng,PANG Jilu,et al. Application of underground coal gasification technology in Xinwen Mining Area[J]. China Coal,2002,28(12):14−15.

[22] 杜锋. 辽河油区煤炭地下气化技术分析与实践[J]. 石油钻探技术,2006,34(5):83−86.

DU Feng. Underground coal gasification technology in the Liaohe Oilfield[J]. Petroleum Drilling Techniques,2006,34(5):83−86.

[23] 柳迎红,张宏,孙新福,等. 辽河油田深部煤炭资源地下气化的探讨[J]. 煤矿安全,2006(6):44−46.

LIU Yinghong,ZHANG Hong,SUN Xinfu,et al. Discussion on underground gasification of deep coal resources in Liaohe Oilfield[J]. Safety in Coal Mines,2006(6):44−46.

[24] 张宏,孟庆坤,夏艳东. 辽河油田煤炭地下气化点火方式模型试验研究[J]. 煤矿安全,2008(1):1−4.

ZHANG Hong,MENG Qingkun,XIA Yandong. Study on ignition technology of underground coal gasification in Liaohe[J]. Safety in Coal Mines,2008(1):1−4.

[25] WANG Zuotang,HUANG Wengang,ZHANG Peng,et al. A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine[J]. Journal of Coal Science & Engineering,2011,17(2):181−186.

[26] 王作棠,王建华,张朋,等. 华亭煤地下导控气化现场试验的产气效果分析[J]. 中国煤炭,2012,38(11):71−74.

WANG Zuotang,WANG Jianhua,ZHANG Peng,et al. Analysis of effect of underground guided coal gasification field trial at Huating coal group[J]. China Coal,2012,38(11):71−74.

[27] 刘淑琴,梅霞,郭巍,等. 煤炭地下气化理论与技术研究进展[J]. 煤炭科学技术,2020,48(1):90−99.

LIU Shuqin,MEI Xia,GUO Wei,et al. Progress of underground coal gasification theory and technology[J]. Coal Science and Technology,2020,48(1):90−99.

[28] 国家煤化工网. 阳泉市首个煤炭地下气化项目奠基[EB/OL]. (2011-12-21) [2021-04-12]. http://www. coalchem. org. cn/investment/html/800203/106206. html.

[29] 陆爱国. 宁夏回族自治区煤炭资源地下气化技术可行性研究项目顺利结题[EB/OL]. (2020-01-20) [2021-04-13]. http://nxdizhiju.nx.gov.cn/dzgz/dzzy/202001/t20200120_1927739.html.

[30] 中国日报网. 重大突破!新疆首个煤炭地下气化项目稳定运营[EB/OL]. (2019-08-01) [2021-04-13]. https://baijiahao.baidu.com/s?id=1640625306583576113&wfr=spider&for=pc.

[31] 刘一鸣. 唐家会矿区煤炭地下气化技术工业化示范项目正式点火投产[EB/OL]. (2019-11-28) [2021-04-13]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=16&id=112832.

[32] 新华网. 中国第四代煤炭地下气化技术成功应用[EB/OL]. (2019-12-05) [2021-04-13]. https://baijiahao.baidu.com/s?id=1652041193956179087&wfr=spider&for=pc.

[33] 人民资讯. 陕煤集团澄合矿业王村斜井煤炭地下气化试验项目达到国内领先水平[EB/OL]. (2021-05-19) [2022-12-25]. https://baijiahao.baidu.com/s?id=1700147396808587008&wfr=spider&for=pc.

[34] 中国石油集团煤炭地下气化技术研发中心揭牌[EB/OL]. (2022-03-18) [2022-12-25]. https://guba.sina.com.cn/?s=thread&bid=1560&tid=493906.

[35] 国家能源局综合司. 关于建立《“十四五”能源领域科技创新规划》实施监测机制的通知[EB/OL]. (2022-10-25) [2022-12-25]. http://www.nea.gov.cn/2022-10/25/c_1310670958.htm.

[36] 天眼新闻. 贵州省无井式煤炭地下气化关键技术工艺与工程示范项目在六枝特区大用镇开工[EB/OL]. (2022-10-03) [2022-12-25]. https://baijiahao.baidu.com/s?id=1745661001719575722&wfr=spider&for=pc.

[37] PERKINS G. Underground coal gasification Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science,2018,67:158−187.

[38] MENDELEEV D I. Metallurgical industry of Ural region [M]. Petesburg:Denakov Printing House,1900.

[39] 余力,梁杰,张维廉,等. 矿井长通道大断面煤炭地下气化工艺:CN1057365C[P]. 2000-10-11.

[40] 余力,张维廉,梁杰. 两阶段煤炭地下气化工艺:CN1062329C[P]. 2001-02-21.

[41] 余力. 长通道大断面两阶段煤炭地下气化方法概述[J]. 江西能源,1992(2):37−38.

YU Li. Overview of long channel and large cross–section two–stage underground coal gasification methods[J]. Jiangxi Energy,1992(2):37−38.

[42] 梁杰,余力. “长通道、大断面”煤炭地下气化新工艺[J]. 中国煤炭,2002,28(12):8−10.

LIANG Jie,YU Li. Underground coal gasification by the new technique of “long passage with large cross section”[J]. China Coal,2002,28(12):8−10.

[43] 汪滨,梁杰. 长通道大断面两阶段煤炭地下气化工艺的试验研究[J]. 煤炭科学技术,1996,24(2):17−19.

WANG Bin,LIANG Jie. Experimental study on two–stage underground coal gasification process with long channel and large cross−section[J]. Coal Science and Technology,1996,24(2):17−19.

[44] 余力. 两阶段煤炭地下气化工艺的应用[J]. 煤炭学报,2009,34(7):1008.

YU Li. Application of two–stage underground coal gasification process[J]. Journal of China Coal Society,2009,34(7):1008.

[45] 余力. 我国废弃煤炭资源的利用:推动煤炭地下气化技术发展[J]. 煤炭科学技术,2013,41(5):1−3.

YU Li. Utilization of abandoned coal resources to promote the development of underground coal gasification technology in China[J]. Coal Science & Technology,2013,41(5):1−3.

[46] 梁杰,梁鲲,徐斌,等. 化石能源低碳循环开采技术及新疆示范工程[J]. 工程研究,2016,8(4):358−364.

LIANG Jie,LIANG Kun,XU Bin,et al. Low carbon cycle mining technology of fossil energy and demonstration project in Xinjiang[J]. Journal of Engineering Studies,2016,8(4):358−364.

[47] BP Company. BP statistical review of world energy [EB/OL]. (2022-08-20) [2022-12-26]. https://www.bp.com/en/global/corporate/energy–economics/statistical–review–of–world–energy/downloads. html.

[48] 罗佐县. 碳中和激活多领域天然气需求潜力[J]. 能源,2020(11):30−32.

LUO Zuoxian. Carbon Neutralization activates the potential demand for natural gas in multiple fields[J]. Energy,2020(11):30−32.

[49] SHENG Yong,ALEKSEY B,DONKA B,et al. Interdisciplinary studies on the technical and economic feasibility of deep underground coal gasification with CO2 storage in Bulgaria[J]. Mitigation and Adaptation Strategies for Global Change,2016,21(4):595−627.

[50] BLINDERMAN M S,KLIMENKO A Y. Underground coal gasification and combustion[M]. Amsterdam:Elsevier Ltd,2017.

[51] 孔令峰,张军贤,李华启,等. 我国中深层煤炭地下气化商业化路径[J]. 天然气工业,2020,40(4):156−165.

KONG Lingfeng,ZHANG Junxian,LI Huaqi,et al. Commercialization path of medium−deep underground coal gasification in China[J]. Natural Gas Industry,2020,40(4):156−165.

[52] 程爱国. 中国煤炭资源保障程度和绿色勘查开发途径[J]. 中国煤炭地质,2020,32(1):5−10.

CHENG Aiguo. Coal resource security level and green exploration,exploitation approaches in China[J]. Coal Geology of China,2020,32(1):5−10.

[53] 邹才能,陈艳鹏,孔令峰,等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发,2019,46(2):195−204.

ZOU Caineng,CHEN Yanpeng,KONG Lingfeng,et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China[J]. Petroleum Exploration and Development,2019,46(2):195−204.

[54] 秦勇,易同生,周永锋,等. 煤炭地下气化产业政策建设困境与破局对策[J/OL]. 煤炭学报,2023,48(6):1−8.

QIN Yong,YI Tongsheng,ZHOU Yongfeng,et al. Dilemma and countermeasure of policy construction of UCG industry[J/OL]. Journal of China Coal Society,2023,48(6):1−8.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.