Coal Geology & Exploration
Abstract
Carbonate reservoirs show fractures and strong heterogeneity, leading to limited applications of a single logging or seismic method in fracture identification. Therefore, this study proposed a method for predicting fractures in carbonate reservoirs based on a fracture identification-sensitive log-seismic parameter (FISLSP) model, and the details are as follows: (1) Based on petrophysical analysis results, as well as formation micro-imaging (FMI) logs and the interpretations of fractures at well locations, this study established a segmental fracture identification-sensitive parameter (FISP) model for fractures at well locations; (2) Using the optimal seismic attributes of near-well seismic traces determined based on the high-quality fractured reservoirs classified according to geological and log interpretation results, this study constructed a FISP model based on the seismic attributes of near-well seismic traces (FISPSA); (3) Using logs combined with seismic attributes, this study established the technology roadmap, method, and procedure for reservoir fracture prediction based on a FISLSP model, achieved the 3D seismic prediction of fractures, and developed a FISLSP model-based 3D seismic fracture prediction method, which applies to buried-hill carbonate oil reservoirs. This method was applied to the prediction of fractures in the Chengdao buried-hill reservoirs of the Shengli Oilfield in the Bohai Bay Basin. The predicted results were consistent with fractures revealed through drilling, indicating that the new method is feasible. The results of this study warrant wide application to the fracture detection of similar buried-hill reservoirs.
Keywords
fracture identification-sensitive parameter, seismic attribute, combination of logs and seismic attributes, petrophysical analysis, reservoir fracture prediction
DOI
10.12363/issn.1001-1986.22.10.0819
Recommended Citation
WANG Zhiwei, ZHANG Kai, WU Qunhu,
et al.
(2023)
"A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model,"
Coal Geology & Exploration: Vol. 51:
Iss.
6, Article 16.
DOI: 10.12363/issn.1001-1986.22.10.0819
Available at:
https://cge.researchcommons.org/journal/vol51/iss6/16
Reference
[1] 马永生. 中国海相碳酸盐岩油气资源、勘探重大科技问题及对策[J]. 世界石油工业,2000,7(3):13−14.
MA Yongsheng. Important science−technology problem and strategy of oil–gas resources and its exploration of marine carbonate rocks in China[J]. World Petroleum Industry,2000,7(3):13−14.
[2] 赵文智,胡素云,刘伟,等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业,2014,34(4):1−9.
ZHAO Wenzhi,HU Suyun,LIU Wei,et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China:A further discussion[J]. Natural Gas Industry,2014,34(4):1−9.
[3] 何治亮,金晓辉,沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,2016,21(1):3−14.
HE Zhiliang,JIN Xiaohui,WO Yujin,et al. Hydrocarbon accumulation characteristics and exploration domains of ultra–deep marine carbonates in China[J]. China Petroleum Exploration,2016,21(1):3−14.
[4] 张光辉. 油气储层测井裂缝识别方法研究及软件研制[D]. 成都:成都理工大学,2011.
ZHANG Guanghui. Method research and software development of identification of fracture in oil or gas reservoir based on well logging[D]. Chengdu:Chengdu University of Technology,2011.
[5] 党青宁,崔永福,陈猛,等. OVT域叠前裂缝预测技术:以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探,2016,40(2):398−404.
DANG Qingning,CUI Yongfu,CHEN Meng,et al. Fracture detection with prestack seismic data in OVT domain:A case study of the Ordovician carbonate reservoir in ZG area of Tazhong district in Tarim Basin[J]. Geophysical and Geochemical Exploration,2016,40(2):398−404.
[6] 吴姗姗,高刚,桂志先,等. 基于Ruger近似式预测裂缝型储层的可行性研究[J]. 煤田地质与勘探,2020,48(1):189−196.
WU Shanshan,GAO Gang,GUI Zhixian,et al. Ruger approximate formula–based prediction of fractured reservoir[J]. Coal Geology & Exploration,2020,48(1):189−196.
[7] 董少群,曾联波,杜相仪,等. 致密碳酸盐岩储集层裂缝智能预测方法[J]. 石油勘探与开发,2022,49(6):1179−1189.
DONG Shaoqun,ZENG Lianbo,DU Xiangyi,et al. An intelligent prediction method of fractures in tight carbonate reservoirs[J]. Petroleum Exploration and Development,2022,49(6):1179−1189.
[8] 周晨. 碳酸盐岩裂缝储层叠后地震属性综合预测[D]. 成都:成都理工大学,2020.
ZHOU Chen. Comprehensive prediction of carbonate fractured reservoirs by post–stack seismic attributes[D]. Chengdu:Chengdu University of Technology,2020.
[9] TOKHMECHI B,MEMARIAN H,NOUBARI H A,et al. A novel approach proposed for fractured zone detection using petrophysical logs[J]. Journal of Geophysics and Engineering,2009,6(4):365−373.
[10] TOKHMCHI B,MEMARIAN H,REZAEE M R. Estimation of the fracture density in fractured zones using petrophysical logs[J]. Journal of Petroleum Science and Engineering,2010,72(1/2):206–213.
[11] SABOORIAN–JOOYBARI H,DEJAM M,CHEN Z,et al. Fracture identification and comprehensive evaluation of the parameters by dual laterolog data[C]//SPE Middle East Unconventional Resources Conference and Exhibition,January 26-28. Muscat,2015.
[12] 黄振华,程礼军,刘俊峰,等. 微电阻率成像测井在识别页岩岩相与裂缝中的应用[J]. 煤田地质与勘探,2015,43(6):121−123.
HUANG Zhenhua,CHENG Lijun,LIU Junfeng,et al. Application of micro–resistivity image logging in identifying shale facies and fractures[J]. Coal Geology & Exploration,2015,43(6):121−123.
[13] AGHLI G,SOLEIMANI B,MOUSSAVI–HARAMI R,et al. Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs[J]. Journal of Petroleum Science and Engineering,2016,142:152−162.
[14] 卢颖忠,黄智辉,管志宁. 用常规测井资料识别裂缝发育程度的方法[J]. 测井技术,2000,24(6):428−432.
LU Yingzhong,HUANG Zhihui,GUAN Zhining,et al. A new method for discrimination of the degree of fracture development using conventional log data[J]. Well Logging Technology,2000,24(6):428−432.
[15] AGUILERA R. Analysis of naturally fractured reservoirs from conventional well logs[J]. Journal of Petroleum Technology,1976,28(7):764−772.
[16] YASIN Q,DU Qizhen,SOHAIL G M,et al. Fracturing index–based brittleness prediction from geophysical logging data:Application to Longmaxi shale[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources,2018,4(4):301−325.
[17] YASIN Q,DU Qizhen,ISMAIL A,et al. A new integrated workflow for improving permeability estimation in a highly heterogeneous reservoir of Sawan gas field from well logs data[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources,2019,5(2):121−142.
[18] DU Qizhen,YASIN Q,ISMAIL A,et al. Combining classification and regression for improving shear wave velocity estimation from well logs data[J]. Journal of Petroleum Science and Engineering,2019,182:106260.
[19] 印兴耀,周静毅. 地震属性优化方法综述[J]. 石油地球物理勘探,2005,40(4):482−489.
YIN Xingyao,ZHOU Jingyi. Summary of optimum methods of seismic attributes[J]. Oil Geophysical Prospecting,2005,40(4):482−489.
[20] 王飞,程礼军,刘俊峰,等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探,2015,43(5):113−116.
WANG Fei,CHENG Lijun,LIU Junfeng,et al. Research and application of post–stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration,2015,43(5):113−116.
[21] 李弘,窦之林,王世星,等. 碳酸盐岩缝洞型储层“弱反射”特征的地震多属性识别[J]. 石油物探,2014,53(6):713−719.
LI Hong,DOU Zhilin,WANG Shixing,et al. Seismic multi–attributes recognition for carbonate fractured−vuggy reservoirs with“weak reflection”characteristics[J]. Geophysical Prospecting for Petroleum,2014,53(6):713−719.
[22] 王端平,张敬轩. 胜利油区埕北30潜山储集性裂缝预测方法[J]. 石油实验地质,2000,22(3):250−255.
WANG Duanping,ZHANG Jingxuan. Prediction method of reservoir fractures in the Chengbei 30 buried–hill of Shengli Oilfield[J]. Experimental Petroleum Geology,2000,22(3):250−255.
[23] 高喜龙. 埕岛油田埕北30潜山储层评价与成藏模式研究[D]. 广州:中国科学院研究生院(广州地球化学研究所),2003.
GAO Xilong. Reservoir evaluation and petroleum pool formation model of CB30 hidden hill in Chengdao Oilfield[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2003.
[24] 张强. 裂缝性碳酸盐岩储层网络发育模式及地震表征技术研究[D]. 青岛:中国石油大学(华东),2020.
ZHANG Qiang. Study on network development model and seismic characterization technology of fractured carbonate reservoir[D]. Qingdao:China University of Petroleum (East China),2020.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons