•  
  •  
 

Coal Geology & Exploration

Abstract

Acoustic detection for mines is a geophysical prospecting technique for mine information detection based on acoustic methods. Compared with other detection methods, acoustic detection has the advantages of wide applicability, high reliability, and low economic investment. This paper reviews the development of acoustic detection technology in the mine field and sorts out and expounds on the research progress and technical characteristics of this technology in detecting basic physical information inside mines and geological information outside mines. Furthermore, this study investigates the detection mechanisms, implementation methods, and applicable scenarios of this technology in determining the object states in the field of mine detection. Regarding the basic physics inside mines, this study reviews the development of technologies such as acoustic thermometry, acoustic positioning, and acoustic velocity measurement of flow fields, focusing on the technologies in the fields of coal temperature measurement, mine pipeline positioning, the integrity detection of underground structures, and life detection and rescue. Moreover, it introduces the developmental trends of acoustic detection in the fields of flue gas velocity monitoring, gas concentration sensing, and humidity information detection. In terms of geological conditions outside mines, this study summarizes the applications of acoustic logging and acoustic CT detection, focusing on their research status in applications such as the ultrasonic detection of fractures in surrounding rocks and the detection of the anomaly areas of strong mine earthquakes. In addition, this paper discusses the shortcomings of the existing studies on mine acoustic measurement technologies, including positioning accuracy, algorithm optimization, and noise interference, among others. In combination with the current application status of physical exploration and the development of modern acoustics, this paper proposes the future development trends and research focuses of acoustic waves in mine detection fields, such as micro-information detection, real-time systematic control, and error optimization. The results of this study can be used as a reference for research on the acoustic detection of mine information in China.

Keywords

mine, geophysical prospecting technique, acoustic detection, geological information, development trend

DOI

10.12363/issn.1001-1986.22.11.0903

Reference

[1] LISHCHENKO N V,LARSHIN V P,PITEL J. Vibrational impact on milled surface irregularities[J]. Journal of Engineering Sciences,2020,7(1):A8−A16.

[2] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

[3] LIANG Yuntao,ZHANG Jian,WANG Liancong,et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases:A review[J]. Journal of Loss Prevention in the Process Industries,2019,57:208−222.

[4] 刘震,王玉涛,刘小平,等. 深部条带开采覆岩“三带”探测及量化评判[J]. 煤田地质与勘探,2020,48(3):17−23.

LIU Zhen,WANG Yutao,LIU Xiaoping,et al. Exploration and quantitative evaluation of overburden strata“three zones”in deep strip mining[J]. Coal Geology & Exploration,2020,48(3):17−23.

[5] 张军. 矿井超浅层高分辨率瞬变电磁探测技术[J]. 煤田地质与勘探,2020,48(4):219−225.

ZHANG Jun. The high–resolution transient electromagnetic detection technology for ultra–shallow layer in coal mine[J]. Coal Geology & Exploration,2020,48(4):219−225.

[6] 石刚,屈战辉,唐汉平,等. 探地雷达技术在煤矿采空区探测中的应用[J]. 煤田地质与勘探,2012,40(5):82−85.

SHI Gang,QU Zhanhui,TANG Hanping,et al. Gob detection based on ground penetrating radar technique[J]. Coal Geology & Exploration,2012,40(5):82−85.

[7] 陈中山,殷全增,耿丽娟,等. 关闭小煤矿采空区地面探测方法优选[J]. 地球物理学进展,2022,37(1):367−373.

CHEN Zhongshan,YIN Quanzeng,GENG Lijuan,et al. Optimization of ground detection method for small closed coal mine[J]. Progress in Geophysics,2022,37(1):367−373.

[8] 郭军,李帅,蔡国斌,等. 采空区隐蔽火源探测及声学法煤温感知新技术探讨[J]. 中国安全生产科学技术,2021,17(6):5−11.

GUO Jun,LI Shuai,CAI Guobin,et al. Discussion on new technologies of hidden fire source detection and coal temperature sensing by acoustic method for goaf[J]. Journal of Safety Science and Technology,2021,17(6):5−11.

[9] 邓军,屈高阳,任帅京,等. 松散煤体中声波传播特性及主要路径实验研究[J/OL]. 煤炭学报,,2023,48(3):1238−1245.

DENG Jun,QU Gaoyang,REN Shuaijing,et al. Experimental study on acoustic wave propagation characteristics and main paths in loose coal[J/OL]. Journal of China Coal Society,2023,48(3):1238−1245.

[10] 苗锦,刘志强,张跟鹏. 基于互相关的时延估计方法及其精度分析[J]. 舰船电子工程,2008,28(6):98−100.

MIAO Jin,LIU Zhiqiang,ZHANG Genpeng. Cross correlation method and precision analysis of time–delay estimation[J]. Ship Electronic Engineering,2008,28(6):98−100.

[11] 吴莉,陈励军. 炉膛声学测温中声波飞渡时间测量的实验研究[J]. 声学技术,2018,37(3):211−216.

WU Li,CHEN Lijun. Experimental research on“time of flight”measurement in acoustic pyrometry for furnace[J]. Technical Acoustics,2018,37(3):211−216.

[12] LI Zechao,CHEN Sizhong,WU Zhicheng,et al. An improved approach for normal–incidence sound transmission loss measurement using a four–microphone impedance tube[J]. Journal of Vibration and Control,2020,27(3/4):332–342.

[13] 刘帆,王浩全,王兆旭. 一种改进的滤波反投影超声重建算法[J]. 国外电子测量技术,2021,40(9):42−48.

LIU Fan,WANG Haoquan,WANG Zhaoxu. Improved filtered back projection algorithm for ultrasonic reconstruction[J]. Foreign Electronic Measurement Technology,2021,40(9):42−48.

[14] 颜华,李欣,王善辉. 基于最小二乘法和克里金插值的三维温度场重建[J]. 沈阳工业大学学报,2014,36(3):303−307.

YAN Hua,LI Xin,WANG Shanhui. Reconstruction of three–dimensional temperature field based on least–square method and Kriging interpolation[J]. Journal of Shenyang University of Technology,2014,36(3):303−307.

[15] DING Xieping. Auxiliary principle and iterative algorithm for a new system of generalized mixed equilibrium problems in Banach spaces[J]. Applied Mathematics and Computation,2011,218(7):3507−3514.

[16] 沈雪华,熊庆宇,石欣,等. 基于收发分体声波换能器的二维温度场重建[J]. 仪器仪表学报,2015,36(8):1715−1723.

SHEN Xuehua,XIONG Qingyu,SHI Xin,et al. Two–dimensional temperature field reconstruction based on split type acoustic transducers[J]. Chinese Journal of Scientific Instrument,2015,36(8):1715−1723.

[17] 沈国清,安连锁,姜根山. 炉膛烟气温度声学测量方法的研究与进展[J]. 仪器仪表学报,2003,24(4):555−558.

SHEN Guoqing,AN Liansuo,JIANG Genshan. Research and development of gas temperature measurement by acoustic pyrometry in furnace[J]. Chinese Journal of Scientific Instrument,2003,24(4):555−558.

[18] GREEN S F. An acoustic technique for rapid temperature distribution measurement[J]. The Journal of the Acoustical Society of America,1985,77(2):759−763.

[19] MODLINSKI N,MADEJSKI P,JANDA T,et al. A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement[J]. Energy,2015,92:77−86.

[20] 李祥春,聂百胜,杨春丽,等. 煤岩体声波波速随温度变化规律试验研究[J]. 煤炭科学技术,2016,44(5):140−144.

LI Xiangchun,NIE Baisheng,YANG Chunli,et al. Experiment study on acoustic wave velocity law with temperature variation in coal and rock mass[J]. Coal Science and Technology,2016,44(5):140−144.

[21] 沈国清,杨杰栋,陈栋,等. 基于二次相关PHAT–β算法的锅炉声学测温时延估计研究[J]. 动力工程学报,2018,38(8):617−623.

SHEN Guoqing,YANG Jiedong,CHEN Dong,et al. Study on time delay estimation in boiler acoustic temperature measurement based on second correlation PHAT–β algorithm[J]. Chinese Journal of Power Engineering,2018,38(8):617−623.

[22] 朱波. 基于声波的温度场重建方法研究与设计[D]. 成都:电子科技大学,2022

[23] 邓军,屈高阳,任帅京,等. 松散煤体中低频声波传声频率优选实验研究[J]. 煤矿安全,2022,53(1):15−23.

DENG Jun,QU Gaoyang,REN Shuaijing,et al. Experimental study on optimization of low frequency acoustic transmission frequency in loose coal[J]. Safety in Coal Mines,2022,53(1):15−23.

[24] 杨庚,闫计栋,沈国清,等. 基于声学法的堆积煤粉温度场实时监测研究[J]. 洁净煤技术,2022,28(4):59−65.

YANG Geng,YAN Jidong,SHEN Guoqing,et al. Study on propagation characteristics of low frequency sound waves in pulverized coal deposits[J]. Clean Coal Technology,2022,28(4):59−65.

[25] 李鹏飞,吕玉祥,康爱国. 电站炉膛煤粉浓度调整下的声波测温技术研究[J]. 电子器件,2019,42(6):1440−1443.

LI Pengfei,LYU Yuxiang,KANG Aiguo. Research on acoustic temperature measurement technology for concentration adjustment of pulverized coal inside power station hearth[J]. Journal of Electron Devices,2019,42(6):1440−1443.

[26] 郭军,王凯旋,蔡国斌,等. 声发射信号研究进展及其在煤温感知领域应用前景[J]. 煤炭科学技术,2022,50(11):84−92.

GUO Jun,WANG Kaixuan,CAI Guobin,et al. Research progress of acoustic emission signal and its application prospect in coal temperature sensing field[J]. Coal Science and Technology,2022,50(11):84−92.

[27] 韩欣辰. 基于声波法重建温度场系统的设计与研究[D]. 青岛:山东科技大学,2018.

HAN Xinchen. Design and research on temperature field reconstruction system based on acoustic method[D]. Qingdao:Shandong University of Science and Technology,2018.

[28] DUGAROV G A,DUCHKOV A A,MANAKOV A Y. Acoustic properties of hydrate–bearing coal samples depending on temperature and water saturation type[J]. Geophysics,2021,86(3):U31−U37.

[29] 梁瑞宇,周健,王青云,等. 仿人耳听觉的助听器双耳声源定位算法[J]. 声学学报,2015,40(3):446−454.

LIANG Ruiyu,ZHOU Jian,WANG Qingyun,et al. Binaural sound localization with hearing aids based on auditory bionics[J]. Acta Acustica,2015,40(3):446−454.

[30] 刘辉. 隐马尔可夫模型的构建及实现[J]. 上海电力大学学报,2021,37(5):467−470.

LIU Hui. Construction and implementation of hidden Markov model[J]. Journal of Shanghai University of Electric Power,2021,37(5):467−470.

[31] 国强,李文韬. 基于正则化约束总体最小二乘的TDOA/FDOA无源定位方法[J]. 哈尔滨工业大学学报,2022,54(5):81−87.

GUO Qiang,LI Wentao. Passive TDOA/FDOA location based on regularized constrained total least squares[J]. Journal of Harbin Institute of Technology,2022,54(5):81−87.

[32] 陈可,汪增福. 基于声压幅度比的声源定位[J]. 计算机仿真,2004,21(11):85−88.

CHEN Ke,WANG Zengfu. A method for sound source localization based on amplitude ratio of sound pressure[J]. Computer Integrated Manufacturing Systems,2004,21(11):85−88.

[33] DAI Jingjing,XU Dazhuan. Detection of underground pipeline based on Golay waveform design[C]//The American Institute of Physics AIP Conference Proceedings,2017,1864:020151.

[34] 谢含宇,王寿喜,郭乔,等. 基于EEMD滤波和时延估计的次声波法管道泄漏定位[J]. 油气储运,2020,39(10):1148−1154.

XIE Hanyu,WANG Shouxi,GUO Qiao,et al. Infrasonic wave method for pipeline leakage locating based on EEMD filter and time delay estimation[J]. Oil and Gas Storage and Transportation,2020,39(10):1148−1154.

[35] LUKONGE A B,CAO Xuewen. Leak detection system for long–distance onshore and offshore gas pipeline using acoustic emission technology:A review[J]. Transactions of the Indian Institute of Metals,2020,73(7):1−13.

[36] 赵增佳,李申鹏,王鑫洋,等. 基于虚拟声波的矿浆输送管道泄漏检测方法[J]. 煤炭技术,2021,40(3):134−137.

ZHAO Zengjia,LI Shenpeng,WANG Xinyang,et al. Leak detection method for slurry pipeline based on virtual acoustic signal[J]. Coal Technology,2021,40(3):134−137.

[37] 黎思杰,王文和,易图云,等. 覆土条件对声波法检测燃气管道泄漏的影响分析[J]. 安全与环境工程,2021,28(6):1−7.

LI Sijie,WANG Wenhe,YI Tuyun,et al. Analysis of the influence of soil covering conditions on gas pipeline leakage detected by acoustic method[J]. Safety and Environmental Engineering,2021,28(6):1−7.

[38] 郭寿松. 一种基于超声波检测的瓦斯抽采管道检漏技术[J]. 矿业安全与环保,2014,41(3):88−91.

GUO Shousong. A leakage detection technology for gas drainage pipeline based on ultrasonic inspection[J]. Mining Safety and Environmental Protection,2014,41(3):88−91.

[39] PFEIL R,PICHLER M,SCHUSTER S,et al. Robust acoustic positioning for safety applications in underground mining[J]. IEEE Transactions on Instrumentation & Measurement,2015,64(11):2876−2888.

[40] ZIMROZ P,WROBLEWSKI A,TRYBALA P. Detection of a predefined acoustic pattern by a measurement system on a drone and its application to search for a missing man in an underground mine[J]. IOP Conference Series:Earth and Environmental Science,2021,942:012018.

[41] 杨敬松,姚振静,宋燕星,等. 红外与声波协同生命探测平台研发[J]. 中国测试,2013,39(5):72−75.

YANG Jingsong,YAO Zhenjing,SONG Yanxing,et al. Design life detection synergy platform with infrared and acoustic wave[J]. China Measurement & Testing Technology,2013,39(5):72−75.

[42] 朱维庆,冯雷,王长红,等. 声相关流体速度测量理论和信号处理方法[J]. 声学学报,2007,32(2):144−150.

ZHU Weiqing,FENG Lei,WANG Changhong,et al. Theory and signal processing of acoustic correlation techniques for current velocity measurement[J]. Acta Acustica,2007,32(2):144−150.

[43] 沈国清,何寿荣,安连锁,等. 声波法测量电站锅炉烟气流速的实验研究[J]. 动力工程学报,2015,35(9):746−751.

SHEN Guoqing,HE Shourong,AN Liansuo,et al. Experimental study on acoustic measurement of flue gas flow in power boilers[J]. Chinese Journal of Power Engineering,2015,35(9):746−751.

[44] 陈水桥,郑远,王鲲,等. 双超声波干涉偏移法测量流体流速[J]. 实验技术与管理,2019,36(1):58−61.

CHEN Shuiqiao,ZHENG Yuan,WANG Kun,et al. Measurement of fluid velocity by double ultrasonic interference offset method[J]. Experimental Technology and Management,2019,36(1):58−61.

[45] 岳晓庚,任红伟,周宾,等. 基于声学技术的矿井风速测量仪器设计[J]. 仪表技术与传感器,2020(5):42−47.

YUE Xiaogeng,REN Hongwei,ZHOU Bin,et al. Design of mine wind speed measurement instrument based on acoustic technology[J]. Instrument Technique and Sensor,2020(5):42−47.

[46] 贺文凯,周宾,任红伟,等. 基于低采样率声波法的电站烟气流速测量[J]. 仪表技术与传感器,2020(7):105−109.

HE Wenkai,ZHOU Bin,REN Hongwei,et al. Measurement of flue gas velocity in power plant based on low sampling rate acoustic wave method[J]. Instrument Technique and Sensor,2020(7):105−109.

[47] 陈栋. 基于声学技术的管内流速和温度测量[D]. 北京:华北电力大学,2018,1−8.

[48] 刘翠伟,敬华飞,方丽萍,等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击,2018,37(20):109−114.

LIU Cuiwei,JING Huafei,FANG Liping,et al. A theoretical study on the attenuation model of leakage acoustic waves for natural gas pipelines[J]. Journal of Vibration and Shock,2018,37(20):109−114.

[49] 王肖梦. 基于声学的湿蒸汽湿度测量研究[D]. 北京:华北电力大学(北京),2021.

WANG Xiaomeng. Study on the measurement of wet steam humidity based on acoustics[D]. Beijing:North China Electric Power University (Beijing),2021.

[50] 刘岩,刘石,雷兢. 基于声波衰减的空间气体浓度分布重建[J]. 仪器仪表学报,2014,35(1):125−131.

LIU Yan,LIU Shi,LEI Jing. Spatial gas mixture concentration distribution reconstruction method based on acoustic attenuation[J]. Chinese Journal of Scientific Instrument,2014,35(1):125−131.

[51] 董经利,许孝凯,张晋言,等. 声波远探测技术概述及发展[J]. 地球物理学进展,2020,35(2):566−572.

DONG Jingli,XU Xiaokai,ZHANG Jinyan,et al. Overview and development of acoustic far detection technology[J]. Progress in Geophysics,2020,35(2):566−572.

[52] 唐晓明,魏周拓. 声波测井技术的重要进展:偶极横波远探测测井[J]. 应用声学,2012,31(1):10−17.

TANG Xiaoming,WEI Zhoutuo. Significant progress of acoustic logging technology:Remote acoustic reflection imaging of a dipole acoustic system[J]. Applied Acoustics,2012,31(1):10−17.

[53] 高琨鹏,李学彬,程致远,等. 声波法及钻孔法在深井软岩巷道松动圈测试中的应用研究[J]. 煤炭技术,2018,37(1):62−64.

GAO Kunpeng,LI Xuebin,CHENG Zhiyuan,et al. Application research of sonic method and peep instrument in broken rock zone test in deep soft rock roadway[J]. Coal Technology,2018,37(1):62−64.

[54] 谢超,门百永,幺永超,等. 基于USB总线的远探测方位反射声波成像测井仪数据读取接口设计[J]. 计算机测量与控制,2021,29(8):218−222.

XIE Chao,MEN Baiyong,YAO Yongchao,et al. Design of data reading interface for the borehole azimuth acoustic reflection imaging tool based on USB bus[J]. Computer Measurement and Control,2021,29(8):218−222.

[55] ZHANG Guangdong,LI Xiongbing,ZHANG Shuzeng,et al. Investigation of frequency−dependent attenuation coefficients for multiple solids using a reliable pulse−echo ultrasonic measurement technique[J]. Measurement,2021,177:109270.

[56] 单立群,祁妍嫣,姜淑贤,等. 基于地震属性集成学习的自然伽马测井数据预测方法[J]. 测井技术,2021,45(4):394−398.

SHAN Liqun,QI Yanyan,JIANG Shuxian,et al. Natural gamma well logging prediction based on seismic attribute ensemble learning[J]. Well Logging Technology,2021,45(4):394−398.

[57] 黄丹峰. 浅析地震波跨孔层析成像(CT)在地下连续墙孤石勘探的运用[J]. 四川建筑,2019,39(2):154−156.

HUANG Danfeng. Analysis of seismic wave cross–hole laminar imaging (CT) in underground diaphragm wall isolated rock exploration[J]. Sichuan Architecture,2019,39(2):154−156.

[58] SULTANOV K S,VATIN N I. Wave theory of seismic resistance of underground pipelines[J]. Applied Sciences,2021,11(4):1797.

[59] 许昭永,段永康,胡毅力,等. 波列振幅衰减测桩法的研究与应用(Ⅰ):单桩竖向承载力的测定[J]. 地球物理学进展,2004,19(3):695−702.

XU Zhaoyong,DUAN Yongkang,HU Yili,et al. Studying and applicating a new method of testing pile by the character of waves train for single impact (Ⅰ):Vertical bearable capability of a pile is measured[J]. Progress in Geophysics,2004,19(3):695−702.

[60] MENDOZA J S,FLORICICH M. Feasibility study for seismic monitoring of hydrocarbons using dipole SONIC logs[J]. Journal of Petroleum Science and Engineering,2021(19):109322.

[61] 张波,李超,张晋言,等. 三维声波测井探测特性分析与处理技术应用[J]. 应用声学,2021,40(5):774−784.

ZHANG Bo,LI Chao,ZHANG Jinyan,et al. Analysis of detecting characteristics and application of data processing technology for 3D array acoustic logging[J]. Applied Acoustics,2021,40(5):774−784.

[62] 周万山,李迎环,王玉铃. 声波技术在石油开采中的应用[J]. 特种油气藏,2002,9(2):74−76.

ZHOU Wanshan,LI Yinghuan,WANG Yuling. Application of acoustic wave in petroleum recovery[J]. Special Oil and Gas Reservoirs,2002,9(2):74−76.

[63] 杜玉峰. 声波测井在鸡西煤田勘探中的应用[J]. 煤炭技术,2009,28(5):142−143.

DU Yufeng. Application of acoustic wave logging to Jixi Coalfield exploration[J]. Coal Technology,2009,28(5):142−143.

[64] 王化耀,张玉峰. 煤层气勘查工程测井监理要点研究[J]. 煤炭工程,2018,50(6):168−170.

WANG Huayao,ZHANG Yufeng. Key points of logging supervision for coalbed gas and coalfield geological prospecting engineering[J]. Coal Engineering,2018,50(6):168−170.

[65] 强琳,刘贵忠. 声波测井数据小波压缩的一种方法[J]. 西安交通大学学报,1999,33(3):35−38.

QIANG Lin,LIU Guizhong. Use of wavelet transform for compressing acoustic wave data from acoustic logging[J]. Journal of Xi’an Jiaotong University,1999,33(3):35−38.

[66] 郝仲田,孙小芳,刘西恩,等. 偶极横波远探测测井技术应用研究[J]. 地球物理学进展,2014,29(5):2172−2177.

HAO Zhongtian,SUN Xiaofang,LIU Xi’en,et al. The application research of dipole acoustic reflection imaging technology[J]. Progress in Geophysics,2014,29(5):2172−2177.

[67] 赵永超,林大江. 地下声波法CT探测技术在工程地质勘查中的应用[J]. 中国金属通报,2020(5):186−187.

ZHAO Yongchao,LIN Dajiang. Application of underground acoustic method CT detection technology in engineering geological investigation[J]. China Metal Bulletin,2020(5):186−187.

[68] 杨艳国,范楠. 基于单孔声波法测试巷道围岩松动圈试验研究[J]. 煤炭科学技术,2019,47(3):93−100.

YANG Yanguo,FAN Nan. Experimental study on surrounding rock loosing circle by single−hole acoustic wave testing method[J]. Coal Science and Technology,2019,47(3):93−100.

[69] 赵朴凡. 基于声波法的基桩嵌岩深度和围岩松动圈探测技术研究[D]. 湘潭:湘潭大学,2021

[70] 华伟昌,张义平,陶铁军,等. 声波检测技术在边坡开挖爆破的应用[J]. 煤炭技术,2017,36(3):195−197.

HUA Weichang,ZHANG Yiping,TAO Tiejun,et al. Application of sound wave test technology for blasting excavation of side slope[J]. Coal Technology,2017,36(3):195−197.

[71] 曹安业,井广成,窦林名,等. 孤岛面开采强矿震异常区的被动声波探测技术及应用[J]. 采矿与安全工程学报,2015,32(1):20−27.

CAO Anye,JING Guangcheng,DOU Linming,et al. Seismic hazard assessment in complex island coalface by computed tomography[J]. Journal of Mining and Safety Engineering,2015,32(1):20−27.

[72] 张晓君,龙坤,宋秀丽,等. 岩爆的超声波监测及预测预报方法试验研究[J]. 采矿与安全工程学报,2016,33(3):515−520.

ZHANG Xiaojun,LONG Kun,SONG Xiuli,et al. Experimental research on ultrasonic monitoring and forecast methods of rockburst[J]. Journal of Mining and Safety Engineering,2016,33(3):515−520.

[73] 汪进超,王川婴,胡胜. 基于定向声波扫描的钻孔围岩结构探测方法[J]. 工程科学与技术,2020,52(1):118−125.

WANG Jinchao,WANG Chuanying,HU Sheng. Detection method of borehole surrounding rock structure based on directional acoustic scanning[J]. Advanced Engineering Sciences,2020,52(1):118−125.

[74] 贾炳,魏建平,温志辉,等. 煤样破坏前兆次声波预测研究[J]. 地球物理学进展,2017,32(4):1773−1778.

JIA Bing,WEI Jianping,WEN Zhihui,et al. Study on prediction of coal sample damage by infrasound[J]. Progress in Geophysics,2017,32(4):1773−1778.

Click below to download English version.

Application and prospect of acoustic detection in the mining sector.pdf (3230 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.