•  
  •  
 

Coal Geology & Exploration

Abstract

The layering effect of the coal seam roof poses major influence on the mechanical behavior of the coal-rock system. Herein, the coal seam roof was simplified into coal-rock combinations with different number of bedding planes in the rock unit, and on this basis, uniaxial compression tests were conducted. Then, the stress-strain characteristics, the evolution law of surface strain field and the acoustic emission characteristics during the test were collected and analyzed using the stress monitoring system, the digital image correlation (DIC) method, and the acoustic emission (AE) system. The test shows that: the stress-strain process of the coal-rock combinations can be divided into 4 stages: the fracture compaction stage, linearly increasing stage, unstable failure stage, and post-peak stage. Besides, progressive failures were found to first occur in the coal units, including coal ejection, coal-rock combinations peeling, ejection of peeled coals, and toppling failure. Based on the acoustic emission characteristics, the coal-rock combinations showed a more obvious phenomenon of compaction, small step, and post-peak stress fluctuation during the uniaxial compression process, due to the internal cooperative deformation failure caused by an increasing heterogeneity degree of the combinations. Meanwhile, obvious stress concentration occurs at the “coal-rock” interface in the combination. This is because the physical-mechanical properties of material therein vary greatly, and lateral restraint will be resulted from the adhesive in the bedding surface. Thus, the uniaxial compression of rock unit is changed to the triaxial tension-compression, while that of the coal unit is changed to the triaxial compression. Hence, the “coal-rock” interface is more prone to failure, where the acoustic emission signal is relatively concentrated, and it is more likely to form strain concentration. Therefore, it could be concluded from the study that the coal-rock combination has the equivalent elastic modulus decreased, the integrity weakened, the carrying capacity reduced, and the uniaxial compression strength in a decreasing trend with the increasing number of bedding surfaces in rock units. Generally, the results could provide some guidance for the prevention and control of dynamic disasters, such as rock burst in roadway.

Keywords

bedding surface, coal-rock combinations, stress analysis of bedding surface, strain concentration, comprehensive characteristics

DOI

10.12363/issn.1001-1986.22.10.0787

Reference

[1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

[2] 左建平,陈岩,王超. 深部煤岩组合体破坏力学与模型[M]. 北京:科学出版社,2017.

[3] 康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报,2019,1(1):013501.

KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(1):013501.

[4] 蔡美峰. 深部开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报,2020,2(3):033037.

CAI Meifeng. Key theories and technonogies for surrounding rock stability and ground control in deep mining[J]. Journal of Mining and Strata Control Engineering,2020,2(3):033037.

[5] 鞠文君,付玉凯. 我国煤矿巷道支护的难题与对策[J]. 煤矿开采,2015,20(6):1−5.

JU Wenjun,FU Yukai. Problem of roadway support in Chinese coal mines and adaptive strategy[J]. Coal Mining Technology,2015,20(6):1−5.

[6] 陆菜平,窦林名,吴兴荣. 组合煤岩冲击倾向性演化及声电效应的试验研究[J]. 岩石力学与工程学报,2007,26(12):2549−2555.

LU Caiping,DOU Linming,WU Xingrong. Experimental research on rules of rockburst tendency evolution and acoustic–electromagnetic effects of compound coal–rock samples[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2549−2555.

[7] 窦林名,田京城,陆菜平,等. 组合煤岩冲击破坏电磁辐射规律研究[J]. 岩石力学与工程学报,2005,24(19):3541−3544.

DOU Linming,TIAN Jingcheng,LU Caiping,et al. Research on electromagnetic radiation rules of composed coal–rock burst failure[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3541−3544.

[8] 左建平,裴建良,刘建锋,等. 煤岩体破裂过程中声发射行为及时空演化机制[J]. 岩石力学与工程学报,2011,30(8):1564−1570.

ZUO Jianping,PEI Jianliang,LIU Jianfeng,et al. Investigation on acoustic emission behavior and its time–space evolution mechanism in failure process of coal–rock combined body[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1564−1570.

[9] 左建平,谢和平,孟冰冰,等. 煤岩组合体分级加卸载特性的试验研究[J]. 岩土力学,2011,32(5):1287−1296.

ZUO Jianping,XIE Heping,MENG Bingbing,et al. Experimental research on loading–unloading behavior of coal–rock combination bodies at different stress levels[J]. Rock and Soil Mechanics,2011,32(5):1287−1296.

[10] 左建平,谢和平,吴爱民,等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报,2011,30(1):84−92.

ZUO Jianping,XIE Heping,WU Aimin,et al. Investigation on failure mechanisms and mechanical behaviors of deep coal–rock single body and combined body[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):84−92.

[11] 赵毅鑫,姜耀东,祝捷,等. 煤岩组合体变形破坏前兆信息的试验研究[J]. 岩石力学与工程学报,2008,27(2):339−346.

ZHAO Yixin,JIANG Yaodong,ZHU Jie,et al. Experimental study on precursory information of deformations of coal–rock composite samples before failure[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(2):339−346.

[12] LIU Wanrong,YUAN Wei,YAN Yatao,et al. Analysis of acoustic emission characteristics and damage constitutive model of coal−rock combined body based on particle flow code[J]. Symmetry,2019,11(8):1040.

[13] 李成杰,徐颖,叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报,2020,42(5):981−988.

LI Chengjie,XU Ying,YE Zhouyuan. Energy dissipation and crushing characteristics of coal–rock–like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):981−988.

[14] 陈光波,李谭,杨磊,等. 不同煤岩比例及组合方式的组合体力学特性及破坏机制[J]. 采矿与岩层控制工程学报,2021,3(2):023522.

CHEN Guangbo,LI Tan,YANG Lei,et al. Mechanical properties and failure mechanism of combined bodies with different coal–rock ratios and combinations[J]. Journal of Mining and Strata Control Engineering,2021,3(2):023522.

[15] 李回贵,李化敏,高保彬. 不同煤厚煤岩组合体破裂过程声发射特征研究[J]. 河南理工大学学报(自然科学版),2021,40(5):30−37.

LI Huigui,LI Huamin,GAO Baobin. Study on acoustic emission characteristics in the process of fracture of coal–rock combination body with different thickness of coal[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(5):30−37.

[16] 杨磊,高富强,王晓卿,等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报,2019,44(12):3894−3902.

YANG Lei,GAO Fuqiang,WANG Xiaoqing,et al. Energy evolution law and failure mechanism of coal–rock combined specimen[J]. Journal of China Coal Society,2019,44(12):3894−3902.

[17] 杨科,刘文杰,窦礼同,等. 煤岩组合体界面效应与渐进失稳特征试验[J]. 煤炭学报,2020,45(5):1691−1700.

YANG Ke,LIU Wenjie,DOU Litong,et al. Experimental investigation into interface effect and progressive instability of coal–rock combined specimen[J]. Journal of China Coal Society,2020,45(5):1691−1700.

[18] XIA Zhiguo,LIU Shuai,BIAN Zhuang,et al. Mechanical properties and damage characteristics of coal–rock combination with different dip angles[J]. KSCE Journal of Civil Engineering,2021,25(5):1687−1699.

[19] 郭东明,左建平,张毅,等. 不同倾角组合煤岩体的强度与破坏机制研究[J]. 岩土力学,2011,32(5):1333−1339.

GUO Dongming,ZUO Jianping,ZHANG Yi,et al. Research on strength and failure mechanism of deep coal–rock combination bodies of different inclined angles[J]. Rock and Soil Mechanics,2011,32(5):1333−1339.

[20] 曹吉胜,戴前伟,周岩,等. 考虑界面倾角及分形特性的组合煤岩体强度及破坏机制分析[J]. 中南大学学报(自然科学版),2018,49(1):175−182.

CAO Jisheng,DAI Qianwei,ZHOU Yan,et al. Failure mechanism and strength of coal–rock combination bodies considering dip angles and fractal characteristics of interface[J]. Journal of Central South University (Science and Technology),2018,49(1):175−182.

[21] 刘朝科,任建喜. 巷道底板砂岩三轴压缩蠕变试验与分数阶模型[J]. 西安科技大学学报,2020,40(6):1003−1009.

LIU Chaoke,REN Jianxi. Triaxial compression creep test of roadway floor sandstone and fractional order model[J]. Journal of Xi’an University of Science and Technology,2020,40(6):1003−1009.

[22] 姜玉龙,梁卫国,李治刚,等. 煤岩组合体跨界面压裂及声发射响应特征试验研究[J]. 岩石力学与工程学报,2019,38(5):875−887.

JIANG Yulong,LIANG Weiguo,LI Zhigang,et al. Experimental study on fracturing across coal–rock interfaces and the acoustic emission response characteristics[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):875−887.

[23] 左建平,宋洪强,陈岩,等. 煤岩组合体峰后渐进破坏特征与非线性模型[J]. 煤炭学报,2018,43(12):3265−3272.

ZUO Jianping,SONG Hongqiang,CHEN Yan,et al. Post–peak progressive failure characteristics and nonlinear model of coal–rock combined body[J]. Journal of China Coal Society,2018,43(12):3265−3272.

[24] 陈岩,左建平,宋洪强,等. 煤岩组合体循环加卸载变形及裂纹演化规律研究[J]. 采矿与安全工程学报,2018,35(4):826−833.

CHEN Yan,ZUO Jianping,SONG Hongqiang,et al. Deformation and crack evolution of coal–rock combined body under cyclic loading–unloading effects[J]. Journal of Mining & Safety Engineering,2018,35(4):826−833.

[25] 陈岩,左建平,魏旭,等. 煤岩组合体破坏行为的能量非线性演化特征[J]. 地下空间与工程学报,2017,13(1):124−132.

CHEN Yan,ZUO Jianping,WEI Xu,et al. Energy nonlinear evolution characteristics of the failure behavior of coal–rock combined body[J]. Chinese Journal of Underground Space and Engineering,2017,13(1):124−132.

[26] 秦忠诚,陈光波,秦琼杰. 组合方式对煤岩组合体力学特性和冲击倾向性影响实验研究[J]. 西安科技大学学报,2017,37(5):655−661.

QIN Zhongcheng,CHEN Guangbo,QIN Qiongjie. Effects of combination mode on mechanical properties and rock burst tendency of the coal−rock combinations[J]. Journal of Xi’an University of Science and Technology,2017,37(5):655−661.

[27] 朱卓慧,冯涛,宫凤强,等. 煤岩组合体分级循环加卸载力学特性的实验研究[J]. 中南大学学报(自然科学版),2016,47(7):2469−2475.

ZHU Zhuohui,FENG Tao,GONG Fengqiang,et al. Experimental research of mechanical properties on grading cycle loading–unloading behavior of coal–rock combination bodies at different stress levels[J]. Journal of Central South University (Science and Technology),2016,47(7):2469−2475.

[28] 李成杰,徐颖,张宇婷,等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报,2019,38(11):2231−2241.

LI Chengjie,XU Ying,ZHANG Yuting,et al. Study on energy evolution and fractal characteristics of cracked coal–rock–like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2231−2241.

[29] 来兴平,方贤威,崔峰,等. 冲击荷载下煤岩损伤演化规律[J]. 西安科技大学学报,2019,39(6):919−927.

LAI Xingping,FANG Xianwei,CUI Feng,et al. Damage evolution of coal and rock under impact load[J]. Journal of Xi’an University of Science and Technology,2019,39(6):919−927.

[30] 段宏跃,陆鹿,谢卫东,等. 基于灰色模糊模型的塔山煤矿构造复杂程度定量评价[J]. 地质与勘探,2022,58(2):420−429.

DUAN Hongyue,LU Lu,XIE Weidong,et al. Quantitative assessment of structural complexity in the Tashan Coal Mine based on the grey fuzzy model[J]. Geology and Exploration,2022,58(2):420−429.

[31] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.

[32] 尹万蕾,潘一山,李忠华. 矩形断面巷道冲击地压机理研究[J]. 岩土工程学报,2018,40(6):1135−1142.

YIN Wanlei,PAN Yishan,LI Zhonghua. Mechanism of rock burst in rectangular section roadway[J]. Chinese Journal of Geotechnical Engineering,2018,40(6):1135−1142.

[33] 李强,王继仁,韩昌良. 火成岩顶板对工作面冲击地压影响的理论分析[J]. 采矿与安全工程学报,2019,36(3):574−582.

LI Qiang,WANG Jiren,HAN Changliang. Theoretical analysis on influence of igneous rock roof on rockburst of working face[J]. Journal of Mining & Safety Engineering,2019,36(3):574−582.

[34] 鲜学福. 层状岩体破坏机理[M]. 重庆:重庆大学出版社,1989.

[35] 郑建伟,鞠文君,吕大钊,等. 顶板条带弱化法防治中央大巷冲击地压机制及实践[J]. 煤炭学报,2023,48(3):1169−1178.

[36] 郑建伟. 顶板条带弱化法防治巷道冲击地压技术研究[D]. 北京:煤炭科学研究总院,2021.

ZHENG Jianwei. Research on roof striped weakening method for rockburst prevention in roadway[D]. Beijing:China Coal Research Institute,2021.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.