Coal Geology & Exploration
Abstract
Accurately grasping the mechanical properties of coal is of great significance to reservoir reconstruction and CBM development. Herein, the prediction model of shear wave time difference in coal reservoir based on multiple logging parameters and the brittleness index evaluation model based on dynamic and static mechanical parameter conversion were established for the research horizon of No.3 coal bed in Zhengzhuang Block. The brittleness index of coal reservoir in the study area was comprehensively evaluated by elastic parameter method. By this way, it is found that the brittleness index of coal bed in single well is obviously affected by “boundary effect” and in regional distribution. Besides, the brittleness index is positively correlated to the coal structure index, and put forward the classification standard of coal structure based on brittleness index. The brittleness index is negatively correlated with the compressive and tensile strength. In addition, the results of four-dimensional seismic fracture monitoring show that the coal in cataclastic structure has the best fracturing effect, followed by the coal in primary structure and granulitic structure successively. Finally, the favorable area of CBM development in the block was predicted with gas content and brittleness index as the main evaluation parameters, which provides a basis for the fracturing design of coal reservoir.
Keywords
mechanical parameters,logging evaluation,brittleness index,coal structure,favorable area optimization
DOI
10.12363/issn.1001-1986.22.10.0808
Recommended Citation
QIU Feng, LIU Jinhua, CAI Yidong,
et al.
(2023)
"Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging: A case study of No. 3 coal bed in Zhengzhuang Block, southern Qinshui Basin,"
Coal Geology & Exploration: Vol. 51:
Iss.
4, Article 6.
DOI: 10.12363/issn.1001-1986.22.10.0808
Available at:
https://cge.researchcommons.org/journal/vol51/iss4/6
Reference
[1] 琚宜文,乔鹏,卫明明,等. 区域构造与演化控制下煤层气富集高产典型模式[J]. 煤田地质与勘探,2022,50(9):1−12.
JU Yiwen,QIAO Peng,WEI Mingming,et al. Typical coalbed methane (CBM) enrichment and production modes under the control of regional structure and evolution[J]. Coal Geology & Exploration,2022,50(9):1−12.
[2] 门相勇,韩征,宫厚健,等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业,2018,38(9):10−16.
MEN Xiangyong,HAN Zheng,GONG Houjian,et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry,2018,38(9):10−16.
[3] 刘大锰,周三栋,蔡益栋,等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术,2017,45(6):1−8.
LIU Dameng,ZHOU Sandong,CAI Yidong,et al. Study on effect of geo–stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology,2017,45(6):1−8.
[4] 孟召平,彭苏萍,傅继彤. 含煤岩系岩石力学性质控制因素探讨[J]. 岩石力学与工程学报,2002,21(1):102−106.
MENG Zhaoping,PENG Suping,FU Jitong. Study on control factors of rock mechanics properties of coal−bearing formation[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(1):102−106.
[5] 张亚蒲,杨正明,鲜保安. 煤层气增产技术[J]. 特种油气藏,2006,13(1):95−98.
ZHANG Yapu,YANG Zhengming,XIAN Bao’an. Coal–bed gas stimulation technology[J]. Special Oil and Gas Reservoirs,2006,13(1):95−98.
[6] 冯青. 煤层气井低产伤害诊断方法及应用[J]. 煤田地质与勘探,2019,47(1):86−91.
FENG Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration,2019,47(1):86−91.
[7] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.
ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.
[8] 张辰庆,许江,彭守建,等. 考虑断裂韧性影响的页岩气储层可压性评价方法[J]. 煤田地质与勘探,2019,47(5):131−137.
ZHANG Chenqing,XU Jiang,PENG Shoujian,et al. Evaluation method of compressibility of shale gas reservoir in consideration of the influence of fracture toughness[J]. Coal Geology & Exploration,2019,47(5):131−137.
[9] 袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报,2013,34(3):523−527.
YUAN Junliang,DENG Jingen,ZHANG Dingyu,et al. Fracability evaluation of shale–gas reservoirs[J]. Acta Petrolei Sinica,2013,34(3):523−527.
[10] 申卫兵,张保平. 不同煤阶煤岩力学参数测试[J]. 岩石力学与工程学报,2000,19(增刊1):860−862.
SHEN Weibing,ZHANG Baoping. Testing study on mechanical parameters of coal[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(Sup.1):860−862.
[11] 杨永杰,宋扬,陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报,2006,31(2):150−153.
YANG Yongjie,SONG Yang,CHEN Shaojie. Test study of coal’s strength and deformation characteristics under triaxial compression[J]. Journal of China Coal Society,2006,31(2):150−153.
[12] 尤明庆. 岩样三轴压缩的破坏形式和Coulomb强度准则[J]. 地质力学学报,2002,8(2):179−185.
YOU Mingqing. Destroy character and coulomb criterion of rock specimen in pseudo−triaxial compression[J]. Journal of Geomechanics,2002,8(2):179−185.
[13] 李小春,白冰,唐礼忠,等. 较低和较高围压下煤岩三轴试验及其塑性特征新表述[J]. 岩土力学,2010,31(3):677−682.
LI Xiaochun,BAI Bing,TANG Lizhong,et al. Triaxial tests of coal under low and high confining pressures and its plastic characteristics description[J]. Rock and Soil Mechanics,2010,31(3):677−682.
[14] ZHANG Bo,ZHAO Tao,JIN Xiaochun,et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis[J]. Interpretation,2015,3(2):T81−T92.
[15] 孟召平,张吉昌,TIEDEMANN J. 煤系岩石物理力学参数与声波速度之间的关系[J]. 地球物理学报,2006,49(5):1505−1510.
MENG Zhaoping,ZHANG Jichang,TIEDEMANN J. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics,2006,49(5):1505−1510.
[16] 梁豪. 页岩储层岩石脆性破裂机理及评价方法[D]. 成都:西南石油大学,2014.
LIANG Hao. Brittle fracture mechanism and evaluation method of shale reservoir rock[D]. Chengdu:Southwest Petroleum University,2014.
[17] 艾林,周明顺,张杰,等. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏,2017,29(2):139−144.
AI Lin,ZHOU Mingshun,ZHANG Jie,et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data[J]. Lithologic Reservoirs,2017,29(2):139−144.
[18] 陈东锐,王延斌,韩文龙,等. 基于常规测井资料计算煤层力学参数[J]. 云南化工,2020,47(6):135−136.
CHEN Dongrui,WANG Yanbin,HAN Wenlong,et al. Calculating mechanics parameters of coal seam based on conventional logging data[J]. Yunnan Chemical Technology,2020,47(6):135−136.
[19] 张杰,范立红,梅杰,等. 测井技术在樊庄地区煤岩结构识别中的应用[J]. 中国煤层气,2017,14(3):12−16.
ZHANG Jie,FAN Lihong,MEI Jie,et al. Application of logging technology in recognizing coal structure in Fanzhuang Area[J]. China Coalbed Methane,2017,14(3):12−16.
[20] WANG Yingjin,LIU Dameng,CAI Yidong,et al. Constraining coalbed methane reservoir petrophysical and mechanical properties through a new coal structure index in the Southern Qinshui Basin,Northern China:Implications for hydraulic fracturing[J]. AAPG Bulletin,2020,104(8):1817−1842.
[21] 熊晓军,林凯,贺振华. 基于等效弹性模量反演的横波速度预测方法[J]. 石油地球物理勘探,2012,47(5):723−727.
XIONG Xiaojun,LIN Kai,HE Zhenhua. A method for S–wave velocity estimation based on equivalent elastic modulus inversion[J]. Oil Geophysical Prospecting,2012,47(5):723−727.
[22] 刘志强. 煤层地应力预测方法研究:以郑庄煤层气区块为例[D]. 北京:中国地质大学(北京),2014.
LIU Zhiqiang. Method of estimating in−situ stresses:A case study of Zhengzhuang coalbed methane field[D]. Beijing:China University of Geosciences (Beijing),2014.
[23] 杨秀春,张继坤,周科. 鄂东气田韩城矿区煤层横波时差测井曲线的构建方法[J]. 测井技术,2014,38(3):304−308.
YANG Xiuchun,ZHANG Jikun,ZHOU Ke. Study on establishing method of shear wave logging curves for coalbed in Eastern Block of Ordos Basin[J]. Well Logging Technology,2014,38(3):304−308.
[24] 刘卫国,韩登宇,苗文韬,等. 利用地球物理测井数据计算新疆托克逊县白嘴山地区岩石力学参数的方法探讨[J]. 铀矿地质,2013,29(5):310−314.
LIU Weiguo,HAN Dengyu,MIAO Wentao,et al. Discussion on the calculation of mechanical parameters of rocks with geophysical logging data in Baizuishan Region,Tuokexun,Xinjiang[J]. Uranium Geology,2013,29(5):310−314.
[25] 单钰铭,刘维国. 地层条件下岩石动静力学参数的实验研究[J]. 成都理工学院学报,2000,27(3):249−254.
SHAN Yuming,LIU Weiguo. Experimental study on dynamic and static mechanics parameters of rocks under formation conditions[J]. Journal of Chengdu University of Technology,2000,27(3):249−254.
[26] 蒋东峰. 基于损伤理论的演示脆性评价方法研究[D]. 大庆:东北石油大学,2016.
JIANG Dongfeng. Research on brittleness evaluation of rock based on damage theory[D]. Daqing:Northeast Petroleum University,2016.
[27] 李邵军,匡智浩,邱士利,等. 岩石脆性评价方法研究进展及适应性探讨[J]. 工程地质学报,2022,30(1):59−70.
LI Shaojun,KUANG Zhihao,QIU Shili,et al. Review of rock brittleness evaluation methods and discussion on their adaptabilities[J]. Journal of Engineering Geology,2022,30(1):59−70.
[28] 刘晓辉,郑钰,郝齐钧,等. 基于特征应力的准静态三轴煤岩脆性特征分析[J]. 岩石力学与工程学报,2021,40(12):2454−2465.
LIU Xiaohui,ZHENG Yu,HAO Qijun,et al. Brittleness characteristics of quasi–static triaxial coal rock based on characteristic stress[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2454−2465.
[29] JARVIE D M,HILL R J,RUBLE T E. Unconventional shale−gas systems:The Mississippian Barnett Shale of north−central Texas as one model for thermogenic shale−gas assessment[J]. AAPG Bulletin,2007,91(4):475−499.
[30] RICKMAN R,MULLEN M,PETRE E,et al. A practical use of shale petrophysics for stimulation design optimization[C]//All shale plays are not clones of the Barnett shale. Denver:SPE Annual Technical Conference & Exhibition,2008.
[31] 熊德国,赵忠明,苏承东,等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报,2011,30(5):998−1006.
XIONG Deguo,ZHAO Zhongming,SU Chengdong,et al. Experimental study of effect of water–saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(5):998−1006.
[32] ARASH D T,OLSON J E. How natural fractures could affect hydraulic−fracture geometry[J]. SPE Journal,2013,19(1):161−171.
[33] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129.
YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129.
[34] 向文鑫,桑树勋,吴章利,等. 贵州省煤层气规划区块煤储层特征与有利区优选[J]. 煤田地质与勘探,2022,50(3):156−164.
XIANG Wenxin,SANG Shuxun,WU Zhangli,et al. Characteristics of coal reservoirs and favorable areas classification and optimization of CBM planning blocks in Guizhou Province[J]. Coal Geology & Exploration,2022,50(3):156−164.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons