Coal Geology & Exploration
Abstract
Beam hardening is a common phenomenon in the application of industrial computerized tomography (ICT). It can cause different grayscale values in components with the same density, which affects the threshold segmentation and later reconstruction of components seriously. Herein, study was conducted on the distribution law of grayscale values under the effect of beam hardening, so as to segment the CT scanning data of coal and rock samples under the beam hardening effect accurately. Through the study, it is found that the change in grayscale value on the grayscale beam could truly reflect the change in component density, which is proved by theoretical derivation. Based on this, the threshold segmentation method was proposed for the grayscale beam. Specifically, the threshold segmentation method of grayscale beam is to discrete the three-dimensional grayscale data volumes through CT reconstruction as one-dimensional grayscale beams at first, then segment and multivalue them with the appropriate full-threshold segmentation method according to the number of target component types, and finally gather the multivalued one-dimensional data volume for three-dimensional data. Thereby, the components can be distinguished through the different values in the three-dimensional data that represent different components. Herein, the threshold segmentation method of grayscale beam was used to segment and reconstruct the scanning data of coal-rock combination under the effect of 6 beams, with the validity of this method verified. The research results could provide a reference for the accurate segmentation of CT scanning data of non-homogeneous coal, rock and other materials.
Keywords
ICT,beam hardening,threshold segmentation,coal and rock combination,grayscale beam
DOI
10.12363/issn.1001-1986.22.08.0641
Recommended Citation
WANG Kai, FU Qiang, XU Chao,
et al.
(2023)
"Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application,"
Coal Geology & Exploration: Vol. 51:
Iss.
4, Article 3.
DOI: 10.12363/issn.1001-1986.22.08.0641
Available at:
https://cge.researchcommons.org/journal/vol51/iss4/3
Reference
[1] 金衍,韦世明,陈康平,等. 致密气自扩散渗流模型[J]. 石油学报,2020,41(6):737−744.
JIN Yan,WEI Shiming,CHEN Kangping,et al. Self–diffusion flow model of tight gas[J]. Acta Petrolei Sinica,2020,41(6):737−744.
[2] 黄书岭,钟鹏举,丁秀丽. 绿泥石片岩单轴压缩特征强度各向异性特征研究[J]. 岩石力学与工程学报,2021,40(增刊2):3182−3190.
HUANG Shuling,ZHONG Pengju,DING Xiuli. Study on characteristic strength anisotropy of layered chlorite schist under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup.2):3182−3190.
[3] 夏同强,王有湃,周福宝,等. 煤岩体应力–渗流–温度多过程耦合试验系统[J]. 中国矿业大学学报,2021,50(2):205−213.
XIA Tongqiang,WANG Youpai,ZHOU Fubao,et al. The stress–seepage–temperature multi–process coupling test system for coal and rock mass[J]. Journal of China University of Mining & Technology,2021,50(2):205−213.
[4] 钟江城,王子辉,王路军,等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报,2019,44(5):1482−1494.
ZHONG Jiangcheng,WANG Zihui,WANG Lujun,et al. Characteristics of damage evolution of deep coal based on CT three–dimensional reconstruction[J]. Journal of China Coal Society,2019,44(5):1482−1494.
[5] 王刚,江成浩,陈雪畅. 煤岩体孔隙结构应力特征的数值模拟研究[J]. 煤田地质与勘探,2021,49(1):57−64.
WANG Gang,JIANG Chenghao,CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. Coal Geology & Exploration,2021,49(1):57−64.
[6] 岳中琦. 基于数字图像的真实细观非均质岩土力学分析数值方法[J]. 地球物理学报,2022,65(1):108−118.
YUE Zhongqi. Digital image based numerical methods for mechanical analyses of geomaterials with actual meso–heterogeneity[J]. Chinese Journal of Geophysics,2022,65(1):108−118.
[7] 王登科,张航,魏建平,等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报,2021,46(11):3550−3564.
WANG Dengke,ZHANG Hang,WEI Jianping,et al. Dynamic evolution characteristics of fractures in gas–bearing coal under the influence of gas pressure using industrial CT scanning technology[J]. Journal of China Coal Society,2021,46(11):3550−3564.
[8] 鞠杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232.
JU Yang,REN Zhangyu,ZHENG Jiangtao,et al. Transparentized solutions and interpretation for the effects of discontinuous structures and multiphysics on rock failure[J]. Journal of China Coal Society,2022,47(1):210−232.
[9] 张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659−2671.
ZHANG Yanbo,XU Yuedong,LIU Xiangxin,et al. Quantitative characterization and mesoscopic study of propagation and evolution of three–dimensional rock fractures based on CT[J]. Rock and Soil Mechanics,2021,42(10):2659−2671.
[10] 蒋明镜,李光帅,曹培,等. 用于土体宏微观力学特性测试的微型三轴仪研制[J]. 岩土工程学报,2020,42(增刊1):6−10.
JIANG Mingjing,LI Guangshuai,CAO Pei,et al. Development of miniature triaxial apparatus for testing of macro– and micro–mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(Sup.1):6−10.
[11] 董志伟,郭红玉,夏大平,等. 基于显微CT的煤生物降解过程中孔隙演化精细表征[J]. 煤田地质与勘探,2019,47(5):63−69.
DONG Zhiwei,GUO Hongyu,XIA Daping,et al. Micro CT–based meticulous characterization of porosity evolution of coal in the process of biodegradation[J]. Coal Geology & Exploration,2019,47(5):63−69.
[12] 王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103−109.
WANG Dengke,WEI Qiang,WEI Jianping,et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology,2020,49(1):103−109.
[13] 方辉煌,桑树勋,刘世奇,等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探,2018,46(5):167−174.
FANG Huihuang,SANG Shuxun,LIU Shiqi,et al. Study of digital petrophysical analysis method based on micro–focus X–ray tomography:A case study from No. 3 coal seam of Bofang Mining Area in Southern Qinshui Basin[J]. Coal Geology & Exploration,2018,46(5):167−174.
[14] 王增勇,汤光平,李建文,等. 工业CT技术进展及应用[J]. 无损检测,2010,32(7):504−508.
WANG Zengyong,TANG Guangping,LI Jianwen,et al. Development and application of industrial CT[J]. Nondestructive Testing,2010,32(7):504−508.
[15] 高丽娜,陈文革. CT技术的应用发展及前景[J]. CT理论与应用研究,2009,18(1):99−109.
GAO Lina,CHEN Wenge. The application and prospect of CT[J]. CT Theory and Applications,2009,18(1):99−109.
[16] 张益海,张催,潘小东,等. 锥束工业CT射束硬化校正方法[J]. 无损检测,2017,39(6):8−12.
ZHANG Yihai,ZHANG Cui,PAN Xiaodong,et al. The methods for beam hardening correction of cone–beam industrial computed tomography[J]. Nondestructive Testing,2017,39(6):8−12.
[17] 陈云斌,陈思,李敬. 硬化伪影的新型表现形式及其校正[J]. 强激光与粒子束,2016,28(10):104001.
CHEN Yunbin,CHEN Si,LI Jing. Form and correction of a new type of artifact induced by beam hardening[J]. High Power Laser and Particle Beams,2016,28(10):104001.
[18] 张学松,赵柏山. 基于Radon变换的CT图像杯状伪影校正[J]. CT理论与应用研究,2016,25(5):539−546.
ZHANG Xuesong,ZHAO Baishan. Cupping artifacts calibration in CT image based on radon transform[J]. CT Theory and Applications,2016,25(5):539−546.
[19] ROMANO C,MINTO J M,SHIPTON Z K,et al. Automated high accuracy,rapid beam hardening correction in X–ray computed tomography of multi−mineral,heterogeneous core samples[J]. Computers and Geosciences,2019,131:144−157.
[20] 张俊,李磊,张峰,等. X射线CT射束硬化校正方法综述[J]. CT理论与应用研究,2013,22(1):195−204.
ZHANG Jun,LI Lei,ZHANG Feng,et al. Review of the methods for beam hardening correction in X–ray computed tomography[J]. CT Theory and Applications,2013,22(1):195−204.
[21] 陈浩,陈云斌,李寿涛. 局部扫描情况下多项式拟合的X射线硬化校正[J]. 强激光与粒子束,2015,27(11):114001.
CHEN Hao,CHEN Yunbin,LI Shoutao. X–ray beam hardening correction based on polynomial fitting in local scanning[J]. High Power Laser and Particle Beams,2015,27(11):114001.
[22] 叶侠娟,张朋. CT系统的能谱估计及射束硬化校正算法[J]. CT理论与应用研究,2003,12(2):10−15.
YE Xiajuan,ZHANG Peng. Estimation of energy spectra of CT system and beam–hardening correction algorithm[J]. CT Theory and Applications,2003,12(2):10−15.
[23] 史再峰,谢向桅,曹清洁,等. 基于卷积神经网络的能谱CT射束硬化伪影抑制方法[J]. 南开大学学报(自然科学版),2021,54(2):74−79.
SHI Zaifeng,XIE Xiangwei,CAO Qingjie,et al. Beam hardening artifacts reduction in spectral CT based on convolutional neural network[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2021,54(2):74−79.
[24] 郭永存,何磊,刘普壮,等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报,2021,46(1):300−309.
GUO Yongcun,HE Lei,LIU Puzhuang,et al. Multi–dimensional analysis and recognition method of coal and gangue dual–energy X–ray images[J]. Journal of China Coal Society,2021,46(1):300−309.
[25] 周丽平,孙怡,程凯,等. 工业X射线CT中基于深度学习的射束硬化伪影抑制方法(英文)[J]. CT理论与应用研究,2018,27(2):227−240.
ZHOU Liping,SUN Yi,CHENG Kai,et al. Deep learning based beam hardening artifact reduction in industrial X–ray CT[J]. CT Theory and Applications,2018,27(2):227−240.
[26] MONSI M,SAEKI T. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany,2005,95(3):549−567.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons