Coal Geology & Exploration
Abstract
Broken formations are often encountered during drilling, which is prone to the instability of wellbore wall and induces serious downhole accidents. Enhancing the cementing force between the broken blocks and improving the mechanical strength of the surrounding rocks of a wellbore is one of the effective ways to solve the instability of wellbore in this type of formation, for which the microbially induced calcite precipitation (MICP) technology provides a good reference. To this end, the growth of Bacillus pasteurii in the solid-free drilling fluid system was analyzed through experimental study, and thus a solid-free drilling fluid suitable for its growth was obtained. Ultimately, a microbial solid-free drilling fluid system was constructed. Then, the effect of wellbore wall enhancement on microbial solid-free drilling fluid system and its mechanism were discussed using a core immersion experiment and scanning electron microscope (SEM) analysis methods. The results show that the most suitable environment for the growth of Bacillus pasteurii is the solid-free drilling fluid composed of plant gel, PAM, CMC, and culture medium, and the OD600 reaches 1.54 after 24 hours of growth. Therefore, it is determined that the formula of the microbial solid-free drilling fluid system is: 0.1% plant gel + 0.1% PAM + 0.1% CMC + Bacillus pasteuri (OD600=0.8) + 0.25% sodium chloride + 1% urea + 0.75% casein peptone + 0.25% soy peptone. Adding calcium sources to microbial solid-free drilling fluid can achieve a better effect of wellbore wall enhancement, and the compression strength of the consolidated specimen can be up to 0.183 MPa. Generally, the wellbore wall enhancement mechanism of this system is to generate calcium carbonate crystals under the induction of microorganisms in the loose particles and thereby fill in the pores, which enhances the cementation force between the loose particles so that the originally loose gravel soil could form an entirety, thereby enhancing the wellbore wall.
Keywords
broken formation,wellbore wall instability,microbially induced calcite precipitation,Bacillus pasteurii,solid-free drilling fluid,wellbore wall enhancement mechanism
DOI
10.12363/issn.1001-1986.22.07.0549
Recommended Citation
LI Zhijun, ZHU Mao, ZHI Jingzi,
et al.
(2023)
"Study on construction of microbial solid-free drilling fluid system and its borehole wall enhancement mechanism,"
Coal Geology & Exploration: Vol. 51:
Iss.
4, Article 21.
DOI: 10.12363/issn.1001-1986.22.07.0549
Available at:
https://cge.researchcommons.org/journal/vol51/iss4/21
Reference
[1] 王伟吉,李大奇,金军斌,等. 顺北油气田破碎性地层井壁稳定技术难题与对策[J]. 科学技术与工程,2022,22(13):5205−5212.
WANG Weiji,LI Daqi,JIN Junbin,et al. Technical problems and measures of wellbore stability of broken formation in Shunbei oil and gas field[J]. Science Technology and Engineering,2022,22(13):5205−5212.
[2] 胡继良,陶士先,纪卫军. 破碎地层孔壁稳定技术的探讨与实践[J]. 探矿工程 (岩土钻掘工程),2011,38(9):30−32.
HU Jiliang,TAO Shixian,JI Weijun. Discussion of borehole wall stability technology in broken formation and the practice[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2011,38(9):30−32.
[3] 谢辉,叶井亮,陈娟,等. 基础工程浆液资源化综合利用技术[J]. 煤田地质与勘探,2022,50(12):177−184.
XIE Hui,YE Jingliang,CHEN Juan,et al. Comprehensive recycling utilization technology of foundation engineering slurry[J]. Coal Geology & Exploration,2022,50(12):177−184.
[4] 王李昌,王成善,张金昌. 科学深井井壁稳定性机理分析及方法研究[J]. 地质装备,2019,20(4):25−28.
WANG Lichang,WANG Chengshan,ZHANG Jinchang. Mechanism analysis and method research of wellbore stability in scientific deep wells[J]. Equipment for Geotechnical Engineering,2019,20(4):25−28.
[5] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15−22.
LI Cheng,BAI Yang,YU Yang,et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid,2020,37(1):15−22.
[6] 武国斌. 钻探工程中的复杂地层钻进技术探讨[J]. 世界有色金属,2017(5):190−191.
WU Guobin. Drilling technology of complex formation in drilling engineering[J]. World Nonferrous Metals,2017(5):190−191.
[7] 张伟. 科学深孔复杂地层钻进技术难题与对策[J]. 探矿工程 (岩土钻掘工程),2014,41(9):7−12.
ZHANG Wei. Technical problems and countermeasures for the drilling operation in complex formations of scientific deep drilling projects[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2014,41(9):7−12.
[8] 黄河,张安平. 松散破碎地层钻探泥浆研究与应用[J]. 山西建筑,2021,47(20):106−107.
HUANG He,ZHANG Anping. Research and application of drilling mud for loose and broken formation[J]. Shanxi Architecture,2021,47(20):106−107.
[9] 白闰平,谷宏海,刘海宇. 地质钻探中坍塌破碎地层钻进护壁方法初探[J]. 山西建筑,2019,45(18):67−68.
BAI Runping,GU Honghai,LIU Haiyu. A preliminary study on the method of protecting the hole wall in the collapsed broken stratum in geological exploration[J]. Shanxi Architecture,2019,45(18):67−68.
[10] 金军斌,欧彪,张杜杰,等. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望[J]. 长江大学学报 (自然科学版),2021,18(6):47−54.
JIN Junbin,OU Biao,ZHANG Dujie,et al. Research status and prospect of borehole stability technology in deep fractured carbonate reservoirs[J]. Journal of Yangtze University (Natural Science Edition),2021,18(6):47−54.
[11] 孙凯,冉茂林,李鑫. 成膜防塌钻井液技术研究与应用[J]. 钻采工艺,2021,44(4):104−109.
SUN Kai,RAN Maolin,LI Xin. Research and application of film–forming anti–collapse drilling fluid system[J]. Drilling & Production Technology,2021,44(4):104−109.
[12] 翟东旭. 豫东地区中深孔厚覆盖地层钻探套管护壁和泥浆护壁效果对比[J]. 探矿工程 (岩土钻掘工程),2013,40(8):6−9.
ZHAI Dongxu. Comparison of wall protection with casing and mud for medium–depth hole drilling in thick overburden layer in the east of Henan[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2013,40(8):6−9.
[13] 王德坤. 川西地区超深井注水泥塞技术实践[J]. 钻采工艺,2021,44(5):127−130.
WANG Dekun. Practice of cementing plug technology in ultra–deep wells in Western Sichuan[J]. Drilling & Production Technology,2021,44(5):127−130.
[14] 牛晓云,牛晓俊,尹彬,等. 注浆堵水技术在松软破碎地层中的应用[J]. 能源技术与管理,2012(6):54−56.
NIU Xiaoyun,NIU Xiaojun,YIN Bin,et al. Application of grouting water blocking technology in soft and broken formation[J]. Energy Technology and Management,2012(6):54−56.
[15] MUYNCK W D,BELIE N D,VERSTRAETE W. Microbial carbonate precipitation in construction materials:A review[J]. Ecological Engineering,2010,36(2):118−136.
[16] BOQUET E,BORONAT A,RAMOS–CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature,1973,246:527−529.
[17] 王瑞兴,钱春香,王剑云,等. 水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J]. 硅酸盐学报,2008,36(10):1378−1384.
WANG Ruixing,QIAN Chunxiang,WANG Jianyun,et al. Different treated methods of microbiologically deposited CaCO3 layer on hardened cement paste surface[J]. Journal of the Chinese Ceramic Society,2008,36(10):1378−1384.
[18] 钱春香,李瑞阳,潘庆峰,等. 混凝土裂缝的微生物自修复效果[J]. 东南大学学报 (自然科学版),2013,43(2):360−364.
QIAN Chunxiang,LI Ruiyang,PAN Qingfeng,et al. Microbial self–healing effects of concrete cracks[J]. Journal of Southeast University (Natural Science Edition),2013,43(2):360−364.
[19] YANG Zuan,CHENG Xiaohui. A performance study of high–strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J]. Construction and Building Materials,2013,41:505−515.
[20] 李沛豪,屈文俊. 细菌诱导碳酸钙矿化材料及其应用前景[J]. 建筑材料学报,2009,12(4):482−486.
LI Peihao,QU Wenjun. Applications of calcium carbonate mineralization material induced by bacterium[J]. Journal of Building Materials,2009,12(4):482−486.
[21] 李沛豪,屈文俊. 生物修复加固材料在土木工程中的应用研究进展[J]. 材料科学与工程学报,2008,26(5):810−815.
LI Peihao,QU Wenjun. State of arts in application of bioremedying and bioreinforceing materials in civil engineering[J]. Journal of Materials Science & Engineering,2008,26(5):810−815.
[22] 程晓辉,麻强,杨钻,等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报,2013,35(8):1486−1495.
CHENG Xiaohui,MA Qiang,YANG Zuan,et al. Dynamic response of liquefiable sand foundation improved by bio–grouting[J]. Chinese Journal of Geotechnical Engineering,2013,35(8):1486−1495.
[23] 张帅,程晓辉. 微生物诱导碳酸钙结晶技术处理可液化砂土地基试验研究及数值模拟[J]. 工业建筑,2015,45(7):23−27.
ZHANG Shuai,CHENG Xiaohui. Numerical simulation and experimental research on stabilization of liquefiable sand foundation by MICP[J]. Industrial Construction,2015,45(7):23−27.
[24] 许朝阳,张莉. 微生物改性对粉土强度的影响[J]. 建筑科学,2009,25(5):45−48.
XU Zhaoyang,ZHANG Li. The effect of microbes on strength of silt[J]. Building Science,2009,25(5):45−48.
[25] 李娜,王丽娟,李凯,等. 菌液浓度对微生物灌浆加固砂土效果的影响机理:中国水利学会地基与基础工程专业委员会第15次全国学术会议论文集[C]. 昆明,2019.
[26] 张鑫磊,陈育民,张喆,等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报,2020,42(6):1023−1031.
ZHANG Xinlei,CHEN Yumin,ZHANG Zhe,et al. Performance evaluation of liquefaction resistance of a MICP–treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1023−1031.
[27] 胡其志,刘彻德,丁志刚. 微生物灌浆加固边坡的机理及稳定性研究[J]. 湖南交通科技,2021,47(4):6−10.
HU Qizhi,LIU Chede,DING Zhigang. Study on the mechanism and stability of microbial grouting for slope reinforcement[J]. Hunan Communication Science and Technology,2021,47(4):6−10.
[28] BACHMEIER K L,WILLIAMS A E,WARMINGTON J R,et al. Urease activity in microbiologically–induced calcite precipitation[J]. Journal of Biotechnology,2002,93(2):171−181.
[29] PEI Di,LIU Zhiming,HU Biru,et al. Research progress on the mechanism and application of Bacillus pasteurii mineralization[J]. Progress in Biochemistry and Biophysics,2020,47(6):467−482.
[30] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京:中国地质大学 (北京),2014.
ZHAO Qian. Experimental study on soil improvement using microbial induced calcite precipitation (MICP)[D]. Beijing:China University of Geosciences (Beijing),2014.
[31] 邵光辉,尤婷,赵志峰,等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报 (自然科学版),2017,41(2):129−135.
SHAO Guanghui,YOU Ting,ZHAO Zhifeng,et al. Microstructure and mechanism of microbial cementation silt treated by bio–grouting[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(2):129−135.
[32] 裴迪,刘志明,胡碧茹,等. 基于不同氮源培养条件的巴氏芽孢杆菌脲酶功能转录组分析[J]. 生物化学与生物物理进展,2021,48(9):1063−1076.
PEI Di,LIU Zhiming,HU Biru,et al. Transcriptome analyses reveal the urease function of Sporosarcina pasteurii based on different nitrogen source culture conditions[J]. Progress in Biochemistry and Biophysics,2021,48(9):1063−1076.
[33] 赵晓婉,冯清鹏,李杰,等. 不同温度下微生物诱导碳酸钙生成量的研究[J]. 工业建筑,2019,49(11):88−92.
ZHAO Xiaowan,FENG Qingpeng,LI Jie,et al. Research of influences of temperature on amount of microbially induced carbonate precipitation[J]. Industrial Construction,2019,49(11):88−92.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons