Coal Geology & Exploration
Abstract
Full-waveform inversion (FWI) is one of the core technologies developed in exploration geophysics. Through FWI, the subsurface velocity structures can be constructed and the attenuation parameter (the quality factor Q) model can be inverted, which is helpful to characterize the types and structures of subsurface media (such as the fluid and collapse column in collapse column). This is significant for the exploration and development of natural resources such as coal, oil and gas. Parameter crosstalk is the key difficulty of visco-elastic FWI. Due to the influences of velocity errors, the inverted Q models contain very strong crosstalk noise. To solve this problem, the visco-elastic FWI theory and method based on multi-objective function was proposed. Specifically, the velocity structures are inverted using the travel time, and the Q models are inverted with the central-frequency objective function. Then, the velocity and Q models are inverted simultaneously with the waveform difference objective function. As the central-frequency is mainly influenced by attenuation, the influences of velocity error on Q model inversion could be effectively reduced. Finally, the algorithm was verified by numerical simulation for its capability to invert the velocity and Q models effectively.
Keywords
seismic full-waveform inversion,visco-elasticity,objective function,parameter crosstalk
DOI
10.12363/issn.1001-1986.22.08.0634
Recommended Citation
LIANG Xu, MA Yue, LIU Chao,
et al.
(2023)
"Visco-elastic full-waveform inversion based on multi-objective function,"
Coal Geology & Exploration: Vol. 51:
Iss.
4, Article 17.
DOI: 10.12363/issn.1001-1986.22.08.0634
Available at:
https://cge.researchcommons.org/journal/vol51/iss4/17
Reference
[1] TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984,49(8):1259−1266.
[2] PRATT R G,SHIN C,HICKS G J. Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion[J]. Geophysical Journal International,1998,133:341−362.
[3] VIRIEUX J,OPERTO S. An overview of full–waveform inversion in exploration geophysics[J]. Geophysics,2009,74(6):WCC127−WCC152.
[4] TROMP J,TAPE C,LIU Qinya. Seismic tomography,adjoint methods,time reversal,and banana–doughnut kernels[J]. Geophysical Journal International,2005,160(1):195−216.
[5] 董良国,迟本鑫,陶纪霞,等. 声波全波形反演目标函数性态[J]. 地球物理学报,2013,56(10):3445−3460.
DONG Liangguo,CHI Benxin,TAO Jixia,et al. Objective function behavior in acoustic full−waveform inversion[J]. Chinese Journal of Geophysics,2013,56(10):3445−3460.
[6] 刘财,裴思嘉,郭智奇,等. 地震波形反演技术在砂泥岩薄互层结构表征中的应用[J]. 地球物理学报,2017,60(5):1893−1902.
LIU Cai,PEI Sijia,GUO Zhiqi,et al. The application of seismic amplitude inversion for the characterization of interbedded sand–shale reservoirs[J]. Chinese Journal of Geophysics,2017,60(5):1893−1902.
[7] WARNER M,RATCLIFFE A,NANGOO T,et al. Anisotropic 3D full−waveform inversion[J]. Geophysics,2013,78(2):R59−R80.
[8] 胡光辉,杜泽源,何兵红,等. 近地表复杂区早至波全波形反演建模技术与应用[J]. 石油物探,2019,58(6):811−818.
HU Guanghui,DU Zeyuan,HE Binghong,et al. Full waveform inversion based on early arrival waves and its application in complex near–surface area[J]. Geophysical Prospecting for Petroleum,2019,58(6):811−818.
[9] WU Rushan,LUO Jingrui,WU Bangyu. Seismic envelope inversion and modulation signal model[J]. Geophysics,2014,79(3):WA013−WA024.
[10] FANG Jinwei,ZHOU Hui,LI Yunyue,et al. Data−driven low−frequency signal recovery using deep−learning predictions in full−waveform inversion[J]. Geophysics,2020,85(6):A37−A43.
[11] 李振春,王自颖,黄建平,等. 基于波数域梯度场分解的多尺度波形反演方法[J]. 地球物理学报,2022,65(7):2693−2703.
LI Zhenchun,WANG Ziying,HUANG Jianping,et al. Multi–scale full waveform inversion based on gradient decomposition in wavenumber domain[J]. Chinese Journal of Geophysics,2022,65(7):2693−2703.
[12] GHOLAMI Y,BROSSIER R,OPERTO S,et al. Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1:Sensitivity and trade–off analysis[J]. Geophysics,2013,78(2):R81−R105.
[13] 刘玉柱,黄鑫泉,万先武,等. 各向异性介质弹性波多参数全波形反演[J]. 地球物理学报,2019,62(5):1809−1823.
LIU Yuzhu,HUANG Xinquan,WAN Xianwu,et al. Elastic multi−parameter full−waveform inversion for anisotropic media[J]. Chinese Journal of Geophysics,2019,62(5):1809−1823.
[14] PAN Wenyong,INNANEN K A,WANG Yanfei. Parameterization analysis and field validation of VTI–elastic full–waveform inversion in a walk−away vertical seismic profile configuration[J]. Geophysics,2020,85(3):B87−B107.
[15] LIU H P,ANDERSON D L,KANAMORI H. Velocity dispersion due to anelasticity;implications for seismology and mantle composition[J]. Geophysical Journal International,1976,47:41−58.
[16] CARCIONE J M,KOSLOFF R. Viscoacoustic wave propagation simulation in the earth[J]. Geophysics,1988,53:769−777.
[17] BLANCH J O,ROBERTSSON J O A,SYMES W W. Modeling of a constant Q:Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique[J]. Geophysics,1995,60:176−184.
[18] BLANCH J O,ROBERTSSON J O A,SYMES W W. Viscoelastic finite difference modeling[J]. Geophysics,1994,59:1444−1456.
[19] 曲英铭,李金丽,王云超,等. 最小二乘逆时偏移中黏弹性和各向异性的校正:以渤海湾地区地震数据为例[J]. 地球物理学报,2019,62(6):2203−2216.
QU Yingming,LI Jinli,WANG Yunchao,et al. Correction of viscoelasticity and anisotropy in least–squares reverse time migration:A Bohai Bay seismic case study[J]. Chinese Journal of Geophysics,2019,62(6):2203−2216.
[20] 陈汉明,周辉,田玉昆. 分数阶拉普拉斯算子黏滞声波方程的最小二乘逆时偏移[J]. 石油地球物理勘探,2020,55(3):616−626.
CHEN Hanming,ZHOU Hui,TIAN Yukun. Least–squares reverse–time migration based on a fractional Laplacian viscoacoustic wave equation[J]. Oil Geophysical Prospecting,2020,55(3):616−626.
[21] BATH M. Spectral analysis in geophysics:Developments in solid earth geophysics[M]. Amsterdam:Elsevier Science Publishing Co,1974.
[22] QUAN Youli,HARRIS J M. Seismic attenuation tomography using the frequency shift method[J]. Geophysics,1997,62(3):895−905.
[23] TONN R. The determination of the seismic quality factor Q from VSP data:A comparison of different computational methods[J]. Geophysical Prospecting,1991,39(1):1−27.
[24] KOMATITSCH D,TROMP J. Introduction to the spectral element method for three–dimensional seismic wave propagation[J]. Geophysical Journal International,1999,139:806−822.
[25] BLANC E,KOMATITSCH D,CHALJUB E,et al. Highly accurate stability–preserving optimization of the Zener viscoelastic model,with application to wave propagation in the presence of strong attenuation[J]. Geophysical Journal International,2016,205:427−439.
[26] KOLSKY H. The propagation of stress pulses in viscoelastic solids[J]. Philosophical Magazine,1952,1(8):693−710.
[27] FUTTERMAN W I. Dispersive body waves[J]. Journal of Geophysical Research Atmospheres,1962,67(13):5279−5291.
[28] PAN Wenyong,INNANEN K A,MARGRAVE G F,et al. Estimation of elastic constants for HTI media using Gauss−Newton and full−Newton multiparameter full−waveform inversion[J]. Geophysics,2016,81(5):R275−R291.
[29] PAN Wenyong,INNANEN K A,GENG Yu. Interparameter trade−off quantification and reduction in isotropic−elastic full–waveform inversion:Synthetic experiments and Hussar land data set application[J]. Geophysical Journal International,2018,213(2):1305−1333.
[30] BROSSIER R. Two–dimensional frequency–domain visco–elastic full waveform inversion:Parallel algorithms,optimization and performance[J]. Computers & Geosciences,2011,37(4):444−455.
[31] KAMEI R,PRATT R G. Inversion strategies for visco–acoustic waveform inversion[J]. Geophysical Journal International,2013,194:859−884.
[32] PAN Wenyong,WANG Yanfei. On the influence of different misfit functions for attenuation estimation in viscoelastic full–waveform inversion:Synthetic study[J]. Geophysical Journal International,2020,221(2):1292−1319.
[33] PAN Wenyong,WANG Yanfei,INNANEN K A. Central–frequency misfit function for full–waveform Q inversion in 2D/3D viscoelastic medium[C]//82nd EAGE Annual Conference & Exhibition,2021:1–5.
[34] FICHTNER A,DRIEL M V. Models and Fréchet kernels for frequency–(in)dependent Q[J]. Geophysical Journal International,2014,198:1878−1889.
[35] 李振春,司道军,孙思宇,等. 基于GPU加速的包络波形反演[J]. 物探化探计算技术,2017,39(2):231−236.
LI Zhenchun,SI Daojun,SUN Siyu,et al. GPU–based envelope waveform inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration,2017,39(2):231−236.
[36] PLESSIX R E. A review of the adjoint–state method for computing the gradient of a functional with geophysical applications[J]. Geophysical Journal International,2006,167:495−503.
[37] PAN Wenyong,QU Luping,INNANEN K A,et al. Imaging near−surface S−wave velocity and attenuation models by full–waveform inversion with distributed acoustic sensing–recorded surface waves[J]. Geophysics,2023,88(1):R65−R78.
[38] PAN Wenyong,INNANEN K A,WANG Yanfei. Adjoint Q tomography with central–frequency measurements in viscoelastic medium[J]. Geophysical Journal International,2023,233:1144−1165.
[39] NOCEDAL J,WRIGHT S. Numerical optimization[M]. Berlin:Springer,2006.
[40] MÉTIVIER L,BRETAUDEAU F,BROSSIER R,et al. Full waveform inversion and the truncated Newton method:Quantitative imaging of complex subsurface structures[J]. Geophysical Prospecting,2014,62(6):1353−1375.
[41] 管建博,李宇,殷裁云,等. 基于拟Hessian梯度预处理算子的勒夫波全波形反演研究[J]. 煤田地质与勘探,2021,49(4):49−59.
GUAN Jianbo,LI Yu,YIN Caiyun,et al. Love wave full waveform inversion via Pseudo–Hessian gradient pre–conditioning operator[J]. Coal Geology & Exploration,2021,49(4):49−59.
[42] LUO Y,SCHUSTER G. Wave–equation traveltime inversion[J]. Geophysics,1991,56(5):645−653.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons