Coal Geology & Exploration
Abstract
Resistivity monitoring of coal mines is an important technical means of preventing water hazards on the roof and floor of a mining face. However, it is difficult to guarantee high-quality resistivity data monitored and collected due to the complex and extremely strong electromagnetic interference in the monitoring environment, as well as the limitations of the maximum emission current for the purpose of safe coal mining. To select and utilize highly reliable data from the massive data monitored daily, this study compared and analyzed the advantages and disadvantages of commonly used methods for quality assessment of data obtained using the DC resistivity method. Aiming at the characteristics of automatic, intelligent, full-waveform, and uninterrupted data acquisition in the resistivity monitoring of coal mines, this study investigated the time- and frequency-domain characteristics of the full-waveform resistivity data. Focusing on the transmitted current, noise of original data, and data stability, this study proposed a quantitative method for data quality assessment using the principles of statistics and designed four assessment parameters, namely the intensity and stability of the transmitted current, the temporal and spatial stability of received signals, and the signal-to-noise ratio of the original data. Accordingly, this study established a quality assessment process for resistivity monitoring data and finally applied the quality assessment process to the monitoring data collected underground. As indicated by the application results, the process proposed in this study has multiple advantages, such as strong pertinence, rich means, and the comprehensive reflection of noise interference, and are suitable for the automatic, intelligent, and full-waveform uninterruptible data acquisition of underground resistivity monitoring. Therefore, the quality assessment process proposed in this study can overcome the insufficient quality control of the resistivity monitoring data of coal mines under current technical conditions.
Keywords
resistivity monitoring of coal mines,data quality control,full-waveform data,frequency spectrum characteristic,signal-to-noise ratio
DOI
10.12363/issn.1001-1986.22.10.0796
Recommended Citation
C Y.
(2023)
"Quality assessment of resistivity monitoring data of coal mines,"
Coal Geology & Exploration: Vol. 51:
Iss.
4, Article 16.
DOI: 10.12363/issn.1001-1986.22.10.0796
Available at:
https://cge.researchcommons.org/journal/vol51/iss4/16
Reference
[1] 高卫富,翟培合,肖乐乐,等. 环工作面三维直流电阻率法研究及应用[J]. 地球物理学报,2020,63(9):3534−3544.
GAO Weifu,ZHAI Peihe,XIAO Lele,et al. Research and application of the 3D DC resistivity method with around working face[J]. Chinese Journal of Geophysics (in Chinese),2020,63(9):3534−3544.
[2] 胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369−2376.
HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all–directional detection method of apparent resistivity for water from the floor strata of coal−mining face[J]. Journal of China Coal Society,2019,44(8):2369−2376.
[3] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348−356.
LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348−356.
[4] 鲁晶津. 煤矿井下含/导水构造三维电阻率反演成像技术[J]. 煤炭学报,2016,41(3):687−695.
LU Jingjin. 3D electrical resistivity inversion and imaging technology for coal mine water–containing/water–conductive structures[J]. Journal of China Coal Society,2016,41(3):687−695.
[5] 张成乾,杨伐,谭磊,等. 双巷三维并行电法数值及物理模型试验研究[J]. 中国煤炭地质,2014,26(6):60−62.
ZHANG Chengqian,YANG Fa,TAN Lei,et al. An experimental study on dual roadways 3D parallel electric method numerical and physical models[J]. Coal Geology of China,2014,26(6):60−62.
[6] 高召宁,孟祥瑞. 煤层底板变形与破坏规律电法动态探测研究[J]. 地球物理学进展,2011,26(6):2204−2209.
GAO Zhaoning,MENG Xiangrui. The dynamic electrical–detection of coal floor deformation and damage law[J]. Progress in Geophysics (in Chinese),2011,26(6):2204−2209.
[7] 刘志新,王明明. 环工作面电磁法底板突水监测技术[J]. 煤炭学报,2015,40(5):1117−1125.
LIU Zhixin,WANG Mingming. Study on encircling face electromagnetic method for monitoring coal face floor inrush[J]. Journal of China Coal Society,2015,40(5):1117−1125.
[8] 孙希奎,许进鹏,杨圣伦,等. 电阻率法动态监测煤层底板破坏变形规律研究[J]. 煤炭科学技术,2013,41(1):113−115.
SUN Xikui,XU Jinpeng,YANG Shenglun,et al. Study on electric resistivity method applied to dynamically monitor and measure failure deformation law of seam floor[J]. Coal Science and Technology,2013,41(1):113−115.
[9] 雷凯丽. 基于钻孔电阻率法的回采工作面底板水害动态监测应用研究[J]. 中国煤炭,2020,46(1):77−81.
LEI Kaili. Application study on water damage dynamic monitoring in the floor of mining face based on borehole resistivity method[J]. China Coal,2020,46(1):77−81.
[10] 刘斌,李术才,聂利超,等. 矿井突水灾变过程电阻率约束反演成像实时监测模拟研究[J]. 煤炭学报,2012,37(10):1722−1731.
LIU Bin,LI Shucai,NIE Lichao,et al. Research on simulation of mine water inrush real–time monitoring of using electrical resistivity constrained inversion imaging method[J]. Journal of China Coal Society,2012,37(10):1722−1731.
[11] 岳建华,刘树才,于景邨. 矿井电法井下干扰试验研究[J]. 勘察科学技术,1994(6):60−62.
YUE Jianhua,LIU Shucai,YU Jingcun. An interference experimental study of electrical prospecting method in mine shaft[J]. Site Investigation Science and Technology,1994(6):60−62.
[12] 安晋松,寇子明,孟巧荣. 矿井瞬变电磁法干扰源测试研究[J]. 太原理工大学学报,2015,46(1):40−44.
AN Jinsong,KOU Ziming,MENG Qiaorong. The experiment of interference sources to transient electromagnetic method in mine[J]. Journal of Taiyuan University of Technology,2015,46(1):40−44.
[13] 国家市场监督管理总局,国家标准化管理委员会. 爆炸性环境第4部分:由本质安全型“i”保护的设备:GB/T 3836.4—2021[S]. 北京:中国标准出版社,2021.
[14] 周聪,汤井田,原源,等. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报(地球科学版),2020,50(6):1870−1886.
ZHOU Cong,TANG Jingtian,YUAN Yuan,et al. Spatial and temporal distribution characteristics of electromagnetic fields in strong noise area[J]. Journal of Jilin University (Earth Science Edition),2020,50(6):1870−1886.
[15] 王辉,程久龙,腾星智,等. 矿区近场源噪声对大地电磁测深数据的影响及其压制方法[J]. 地球物理学进展,2016,31(3):1358−1366.
WANG Hui,CHENG Jiulong,TENG Xingzhi,et al. Source effect on magnetotelluric data due to mining area and its suppression[J]. Progress in Geophysics (in Chinese),2016,31(3):1358−1366.
[16] 葛双超,李斌. 大地电磁法人文噪声干扰特点及处理方法综述[J]. 物探化探计算技术,2021,43(5):609−619.
GE Shuangchao,LI Bin. Review of the characteristics and processing methods of human noise interference in magnetotelluric[J]. Computing Techniques for Geophysical and Geochemical Exploration,2021,43(5):609−619.
[17] 罗延钟,陆占国,王寒冰,等. 伪随机信号电法仪的抗干扰参数[J/OL]. 地球物理学进展,2021:1–11 [2022-10-19]. https://kns.cnki.net/kcms/detail/11.2982.p.20210529.1920.036.html.
LUO Yanzhong,LU Zhanguo,WANG Hanbing,et al. Anti–interference parameters of instrument for electrical prospecting using pseudo random signal[J]. Progress in Geophysics (in Chinese),2021:1–11 [2022-10-19]. https://kns.cnki.net/kcms/detail/11.2982.p.20210529.1920.036.html.
[18] 程辉,傅崧原,李帝铨,等. 电磁勘探中工频噪声采集技术研究[J]. 地球物理学进展,2021,36(6):2667−2674.
CHENG Hui,FU Songyuan,LI Diquan,et al. Research on power frequency noise acquisition technology in electromagnetic exploration[J]. Progress in Geophysics (in Chinese),2021,36(6):2667−2674.
[19] 张翔,刘晓敏,肖小玲,等. 基于支持向量机的去噪在电法勘探中的应用[J]. 石油天然气学报,2005,27(3):338−340.
ZHANG Xiang,LIU Xiaomin,XIAO Xiaoling,et al. Application of eliminating noise based on a support vector machine in electric prospection[J]. Journal of Oil and Gas Technology,2005,27(3):338−340.
[20] 李晋,燕欢,汤井田,等. 基于匹配追踪和遗传算法的大地电磁噪声压制[J]. 地球物理学报,2018,61(7):3086−3101.
LI Jin,YAN Huan,TANG Jingtian,et al. Magnetotelluric noise suppression based on matching pursuit and genetic algorithm[J]. Chinese Journal of Geophysics (in Chinese),2018,61(7):3086−3101.
[21] 邓琰,汤吉. 大地电磁测深方法数据处理进展[J]. 地球物理学进展,2019,34(4):1411−1422.
DENG Yan,TANG Ji. Advances in magnetotelluric data processing[J]. Progress in Geophysics (in Chinese),2019,34(4):1411−1422.
[22] 朱鲁,张振勇,陈香菱,等. 小波阈值去噪方法在矿井电法数据处理中的应用[J]. 山东科技大学学报(自然科学版),2010,29(1):1−4.
ZHU Lu,ZHANG Zhenyong,CHEN Xiangling,et al. Application of wavelet threshold noise–deadening method in mine electrical data processing[J]. Journal of Shandong University of Science and Technology (Natural Science),2010,29(1):1−4.
[23] 汤井田,刘子杰,刘峰屹,等. 音频大地电磁法强干扰压制试验研究[J]. 地球物理学报,2015,58(12):4636−4647.
TANG Jingtian,LIU Zijie,LIU Fengyi,et al. The denoising of the audio magnetotelluric data set with strong interferences[J]. Chinese Journal of Geophysics (in Chinese),2015,58(12):4636−4647.
[24] 万云霞. 强干扰环境下电磁探测技术研究[D]. 长春:吉林大学,2013.
WAN Yunxia. Research on techniques of electromagnetic detection in strong interference environment[D]. Changchun:Jilin University,2013.
[25] 国家煤炭工业局. 煤炭电法勘探规范:MT/T 898—2000[S]. 北京:煤炭工业出版社,2000.
[26] 王树威. 小煤窑采空区综合探测技术的应用研究[D]. 西安:西安科技大学,2012.
WANG Shuwei. The application research of integrated exploration methods of excavated region in small coal mine[D]. Xi’an:Xi’an University of Science and Technology,2012.
[27] 陈新明. 大埋深复杂水文地质条件工作面防治水技术研究[D]. 北京:中国矿业大学(北京),2012.
CHEN Xinming. Study of the water prevention technology on the working face under great depth and complicated hydrogeological conditions[D]. Beijing:China University of Mining and Technology (Beijing),2012.
[28] 王冰纯. 基于2n伪随机序列的矿井电法监测系统研制[D]. 北京:煤炭科学研究总院,2016.
WANG Bingchun. Development of mine electrical monitoring system based on 2n pseudorandom sequence[D]. Beijing:China Coal Research Institute,2016.
[29] 鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36−44.
LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine–used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36−44.
[30] 鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18−25.
LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18−25.
[31] 鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(3):186−194.
LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super–high mining face[J]. Coal Geology & Exploration,2019,47(3):186−194.
[32] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118−121.
WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo−random sequence[J]. Safety in Coal Mines,2018,49(12):118−121.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons