•  
  •  
 

Coal Geology & Exploration

Abstract

A CSAMT detection test was carried out for a coal mine with V8 multi-functional electrical instrument. Due to the serious electromagnetic interference within the area, the Cagniard apparent resistivity was low in quality. In order to improve the quality and utilization rate of data, authors attempted to process the CSAMT data collected by V8 with the wide field electromagnetic method, which used single-component method and ratio method (Electric field divided by magnetic field) to calculate apparent resistivity. The results showed that there was some deviation between the single-component wide field apparent resistivity and the actual terrestrial electricity because the emission current was not measured during the construction of V8. The wide field apparent resistivity of ratio method was agree with the Cagniard apparent resistivity in the high frequencies but significantly better in the low frequencies, and consistent with the actual terrestrial electricity. In addition, the inversion results of the ratio method wide field apparent resistivity accurately reflected the interface between the coal measure strata and the Ordovician limestone. The geological interpretation corresponded well with the drilling results, which verified the feasibility and effectiveness of wide field electromagnetic method in CSAMT data processing for coal mines.The research results also provide references for CSAMT data processing of other mineral resources.

Keywords

CSAMT,WFEM,strong interference environment,wide field apparent resistivity,Cagniard apparent resistivity

DOI

10.12363/issn.1001-1986.22.09.0676

Reference

[1] 申宝宏,雷毅,刘见中. 中国煤矿灾害防治战略研究[M]. 徐州:中国矿业大学出版社,2011.

[2] 程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024−2032.

CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024−2032.

[3] 李文. 煤矿采空区地面综合物探方法优化研究[J]. 煤炭科学技术,2017,45(1):194−199.

LI Wen. Optimization study of surface comprehensive geophysical detection methods of coal mine goafs[J]. Coal Science and Technology,2017,45(1):194−199.

[4] 武欣,潘冬明,于景邨. 煤矿采空区地球物理探测方法综述[J]. 地球物理学进展,2022,37(3):1197−1206.

WU Xin,PAN Dongming,YU Jingcun. Review in the geophysical methods for coalmine goaf prospecting[J]. Progress in Geophysics (in Chinese),2022,37(3):1197−1206.

[5] 李帝铨,肖教育,张继峰,等. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探,2021,45(5):1359−1366.

LI Diquan,XIAO Jiaoyu,ZHANG Jifeng,et al. Comparison of application effects of WFEM and CSAMT in water–rich area of Xinyuan Coal Mine[J]. Geophysical & Geochemical Exploration,2021,45(5):1359−1366.

[6] 底青云,UNSWORTH M,王妙月. 复杂介质有限元法2.5维可控源音频大地电磁法数值模拟[J]. 地球物理学报,2004,47(4):723−730.

DI Qingyun,UNSWORTH M,WANG Miaoyue. 2.5–D CSAMT modeling with the finite element method over 2–D complex earth media[J]. Chinese Journal of Geophysics,2004,47(4):723−730.

[7] 汤井田,何继善. 可控源音频大地电磁法及其应用[M]. 长沙:中南大学出版社,2005.

[8] 袁桂琴,熊盛青,孟庆敏,等. 地球物理勘查技术与应用研究[J]. 地质学报,2011,85(11):1744−1805.

YUAN Guiqin,XIONG Shengqing,MENG Qingmin,et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica,2011,85(11):1744−1805.

[9] 刘最亮,张奋轩,张继锋,等. 基于 CSAMT 电场分量的电性标志层深度校正技术及应用[J]. 煤田地质与勘探,2021,49(4):24−32.

LIU Zuiliang,ZHANG Fenxuan,ZHANG Jifeng,et al. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. Coal Geology & Exploration,2021,49(4):24−32.

[10] 何继善. 广域电磁法和伪随机信号电法[M]. 北京:高等教育出版社,2010.

[11] 李帝铨,胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探,2015,39(5):967−972.

LI Diquan,HU Yanfang. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical & Geochemical Exploration,2015,39(5):967−972.

[12] 朱威,范翠松,姚大为,等. 矿集区大地电磁噪声场源分析及噪声特点[J]. 物探与化探,2011,35(5):658−662.

ZHU Wei,FAN Cuisong,YAO Dawei,et al. Noise source analysis and noise characteristics study of MT in an ore concentration area[J]. Geophysical & Geochemical Exploration,2011,35(5):658−662.

[13] 武军杰,邓晓红,张杰,等. 强干扰区电磁法勘探抗干扰措施及效果分析[J]. 物探化探计算技术,2013,35(1):40−46.

WU Junjie,DENG Xiaohong,ZHANG Jie,et al. The anti–interference measures with electromagnetic method in noisy area strong level and the analysis of effect[J]. Computing Techniques for Geophysical and Geochemical Exploration,2013,35(1):40−46.

[14] 汤井田,任政勇,周聪,等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报,2015,58(8):2681−2705.

TANG Jingtian,REN Zhengyong,ZHOU Cong,et al. Frequency–domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics (in Chinese),2015,58(8):2681−2705.

[15] 杨洋. 基于周期特征提取有效信号的去噪方法研究[D]. 长沙:中南大学,2017.

YANG Yang. Research on extraction for useful signal and denoising method based on periodic feature[D]. Changsha:Central South University,2017.

[16] 杨洋,何继善,李帝铨. 在频率域基于小波变换和Hilbert解析包络的CSEM噪声评价[J]. 地球物理学报,2018,61(1):344−357.

YANG Yang,HE Jishan,LI Diquan. A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope[J]. Chinese Journal of Geophysics,2018,61(1):344−357.

[17] YANG Yang,LI Diquan,TONG Tiegang,et al. Denoising controlled–source electromagnetic data using least–squares inversion[J]. Geophysics,2018,83(4):1JA−Z18.

[18] 胡艳芳. 基于聚类方法的CSEM频率域信噪分离研究[D]. 长沙:中南大学,2021.

HU Yanfang. Noise separation study of CSEM data in frequency domain based on clustering method[D]. Changsha:Central South University,2021.

[19] 吕庆田,张晓培,汤井田,等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报,2019,62(10):3629−3664.

LYU Qingtian,ZHANG Xiaopei,TANG Jingtian,et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics (in Chinese),2019,62(10):3629−3664.

[20] 李春兰. 七元煤矿矿区水文地质条件[J]. 科技创新导报,2010(10):50.

LI Chunlan. The–hydro–geological conditions of Qiyuan Coal Mining[J]. Science and Technology Innovation Herald,2010(10):50.

[21] 穆金霞. 七元煤矿水文地质条件分析及涌水量估算[J]. 煤炭与化工,2021,44(12):64−68.

MU Jinxia. Hydrogeological condition analysis and water inflow estimation in Qiyuan Mine[J]. Coal and Chemical Industry,2021,44(12):64−68.

[22] 张继锋,周光裕,刘最亮,等. EEx广域电磁法横向约束反演[J]. 煤炭学报,2022,47(7):2698−2707.

ZHANG Jifeng,ZHOU Guangyu,LIU Zuiliang,et al. Lateral constrained inversion of EEx wide field data[J]. Journal of China Coal Society,2022,47(7):2698−2707.

[23] 何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版),2010,41(3):1065−1072.

HE Jishan. Wide field electromagnetic sounding methods[J]. Journal of Central South University (Science and Technology),2010,41(3):1065−1072.

[24] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报,2019,29(9):1809−1816.

HE Jishan. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):1809−1816.

[25] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探,2020,44(5):985−990.

HE Jishan. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical & Geochemical Exploration,2020,44(5):985−990.

[26] 王顺国,熊彬. 广域视电阻率的数值计算方法[J]. 物探化探计算技术,2012,34(4):380−383.

WANG Shunguo,XIONG Bin. Numerical calculation methods of wide field apparent resistivity[J]. Computing Techniques for Geophysical and Geochemical Exploration,2012,34(4):380−383.

[27] 索光运,李帝铨,胡艳芳. 基于解析雅克比矩阵的EEx广域电磁法一维并行约束反演[J]. 物探化探计算技术,2019,41(1):55−61.

SUO Guangyun,LI Diquan,HU Yanfang. One–dimension parallel constrained inversion of EEx wide field electromagnetic method based on analytical Jacobian matrix[J]. Computing Techniques for Geophysical and Geochemical Exploration,2019,41(1):55−61.

[28] 张乔勋,李帝铨,田茂军. 广域电磁法在赣南某盆地油气勘探中的应用[J]. 石油地球物理勘探,2017,52(5):1085−1092.

ZHANG Qiaoxun,LI Diquan,TIAN Maojun. Application of wide field electromagnetic method to the hydrocarbon exploration in a basin of South Jiangxi[J]. Oil Geophysical Prospecting,2017,52(5):1085−1092.

[29] 朱云起,李帝铨,王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探,2021,45(4):1030−1036.

ZHU Yunqi,LI Diquan,WANG Jinhai. Wide field electromagnetic data processing and interpretation platform based on MySQL[J]. Geophysical & Geochemical Exploration,2021,45(4):1030−1036.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.