Coal Geology & Exploration
Abstract
In order to explore the role of Klinkenberg effect and Klinkenberg factor in different states in the process of CO2-Enhanced Coal Bed Methane (CO2-ECBM), the effects of Klinkenberg factor of zero, fixed Klinkenberg factor and dynamic Klinkenberg factor on CO2-ECBM were simulated and analyzed by COMSOL finite element software. The dynamic changes of CH4 and CO2 pressure with this factor were studied, and the CH4 gas production was compared with the engineering practice. The results show that the effective permeability of CH4 and CO2 increases slowly at first, then decreases rapidly and gradually tends to be gentle. Compared with the fixed Klinkenberg factor or Klinkenberg factor of zero, the effective permeability of CH4 and CO2 under the influence of dynamic Klinkenberg factor is larger. When the Klinkenberg factor is a dynamic variable, the effective permeability of CO2 is less than that of CH4 due to the influence of molar mass and dynamic viscosity of different gases. The CH4 pressure in the coal seam decreases faster and the CO2 pressure rises faster. When the Klinkenberg factor is fixed or zero, the CH4 pressure in the coal seam will be overestimated, and the influence range of CH4 extraction and CO2 pressure injection will be underestimated, and the valuation will increase with time. The research results are helpful to analyze the variation trend of effective permeability of CH4 and CO2, estimate the influence range of CH4 extraction and CO2 injection and the gas production of CH4, and have theoretical guiding significance in exploring coal seam permeability, optimizing well pattern layout and quantitatively evaluating gas production of coalfield.
Keywords
Klinkenberg effect, Klinkenberg factor, CO2-ECBM, permeability, gas pressure, CO2 storage
DOI
10.12363/issn.1001-1986.22.09.0713
Recommended Citation
SA Zhanyou, WU Jingbo, YANG Yongliang,
et al.
(2023)
"CO2-ECBM simulation study considering Klinkenberg factor state,"
Coal Geology & Exploration: Vol. 51:
Iss.
3, Article 48.
DOI: 10.12363/issn.1001-1986.22.09.0713
Available at:
https://cge.researchcommons.org/journal/vol51/iss3/48
Reference
[1] 国务院. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. http://www. gov. cn/xinwen/2021-03/13/content_5592681. htm,2021-03-13.
[2] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9.
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9.
[3] 白刚,周西华,魏士平,等. 低渗煤层注CO2增抽瓦斯数值模拟与应用[J]. 煤田地质与勘探,2019,47(3):77−84.
BAI Gang,ZHOU Xihua,WEI Shiping,et al. Simulation and test of enhancement of gas drainage through CO2 injection into coal seam of low permeability[J]. Coal Geology & Exploration,2019,47(3):77−84.
[4] 李立功,康天合. 滑脱系数动态变化对煤层气运移的影响[J]. 煤矿安全,2019,50(5):1−6.
LI Ligong,KANG Tianhe. Influence of dynamic change of slippage coefficient on CBM migration[J]. Safety in Coal Mines,2019,50(5):1−6.
[5] 杨宏民,夏会辉,王兆丰. 注气驱替煤层瓦斯时效特性影响因素分析[J]. 采矿与安全工程学报,2013,30(2):273−277.
YANG Hongmin,XIA Huihui,WANG Zhaofeng. Influencing factors on time–varying characteristics of displacement coalbed methane by gas injection[J]. Journal of Mining & Safety Engineering,2013,30(2):273−277.
[6] REN Ting,WANG Gongda,CHENG Yuanping,et al. Model development and simulation study of the feasibility of enhancing gas drainage efficiency through nitrogen injection[J]. Fuel,2017,194:406−422.
[7] 刘世奇,方辉煌,桑树勋,等. 沁水盆地南部煤层气直井合层排采产气效果数值模拟[J]. 煤田地质与勘探,2022,50(6):20−31.
LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. Coal Geology & Exploration,2022,50(6):20−31.
[8] 刘佳佳,王丹,王亮,等. 考虑Klinkenberg效应的瓦斯抽采流固耦合模型及其应用[J]. 中国安全科学学报,2016,26(12):92−97.
LIU Jiajia,WANG Dan,WANG Liang,et al. A coupled fluid–solid model considering Klinkenberg effect for methane extraction and its application[J]. China Safety Science Journal,2016,26(12):92−97.
[9] 邱阳,聂琪,刘聪. 基于气固耦合的Klinkenberg效应对单孔瓦斯抽采的影响研究[J]. 矿业安全与环保,2016,43(5):14−17.
QIU Yang,NIE Qi,LIU Cong. Research of influence of Klinkenberg effect on single–hole gas drainage based on gas–solid coupling[J]. Mining Safety & Environmental Protection,2016,43(5):14−17.
[10] 茹忠亮,简阔,马国胜. 考虑Klinkenberg效应的多孔介质气体渗流模型[J]. 中国科技论文,2018,13(3):310−313.
RU Zhongliang,JIAN Kuo,MA Guosheng. The gas seepage model in porous medium considering Klinkenberg effect[J]. China Sciencepaper,2018,13(3):310−313.
[11] 段淑蕾,李波波,李建华,等. 含水煤岩渗透率演化规律及动态滑脱效应的作用机制[J]. 岩石力学与工程学报,2022,41(4):798−808.
DUAN Shulei,LI Bobo,LI Jianhua,et al. Permeability evolution of water–bearing coal considering dynamic slippage effect[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):798−808.
[12] 东振,申瑞臣,薛华庆,等. 考虑滑脱效应的低阶煤动态渗透率预测新模型[J]. 岩土力学,2019,40(11):4270−4278.
DONG Zhen,SHEN Ruichen,XUE Huaqing,et al. A new model for predicting low–rank coal dynamic permeability considering slippage effect[J]. Rock and Soil Mechanics,2019,40(11):4270−4278.
[13] 石军太,李相方,徐兵祥,等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学:物理学 力学 天文学,2013,43(12):1548−1557.
SHI Juntai,LI Xiangfang,XU Bingxiang,et al. Review on desorption–diffusion–flow model of coal–bed methane[J]. Science China:Physics,Mechanics & Astronomy,2013,43(12):1548−1557.
[14] 赵嵘,齐黎明. 井下直接法测定煤层瓦斯压力研究现状及分析[J]. 煤炭技术,2017,36(3):202−203.
ZHAO Rong,QI Liming. Research status of direct method of gas pressure measurement in coal seam under mine and its analysis[J]. Coal Technology,2017,36(3):202−203.
[15] 李胜,张浩浩,范超军,等. 考虑基质瓦斯渗流的煤层流固耦合模型[J]. 中国安全科学学报,2018,28(3):114−119.
LI Sheng,ZHANG Haohao,FAN Chaojun,et al. A flow–solid coupling model considering matrix methane seepage for coal methane extraction[J]. China Safety Science Journal,2018,28(3):114−119.
[16] LIU Qingquan,CHENG Yuanping,WANG Haifeng,et al. Numerical assessment of the effect of equilibration time on coal permeability evolution characteristics[J]. Fuel,2015,140:81−89.
[17] CHEN Zhongwei,LIU Jishan,ELSWORTH D,et al. Impact of CO2 injection and differential deformation on CO2 injectivity under in–situ stress conditions[J]. International Journal of Coal Geology,2010,81(2):97−108.
[18] ZHU W C,WEI C H,LIU J,et al. A model of coal–gas interaction under variable temperatures[J]. International Journal of Coal Geology,2011,86(2/3):213–221.
[19] 刘世奇,方辉煌,桑树勋,等. 基于多物理场耦合求解的煤层CO2–ECBM数值模拟研究[J]. 煤炭科学技术,2019,47(9):51−59.
LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation study on coal seam CO2–ECBM based on multi–physics fields coupling solution[J]. Coal Science and Technology,2019,47(9):51−59.
[20] FANG Huihuang,SANG Shuxun,LIU Shiqi. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2–ECBM process[J]. Journal of Petroleum Science and Engineering,2019,179:885−898.
[21] SAGHAFI A,FAIZ M,ROBERTS D. CO2 storage and gas diffusivity properties of coals from Sydney Basin,Australia[J]. International Journal of Coal Geology,2007,70(1/2/3):240–254.
[22] 郝建峰,梁冰,孙维吉,等. 考虑吸附/解吸热效应的含瓦斯煤热–流–固耦合模型及数值模拟[J]. 采矿与安全工程学报,2020,37(6):1282−1290.
HAO Jianfeng,LIANG Bing,SUN Weiji,et al. Gassy coal thermal−hydraulic−mechanical coupling model and numerical simulation considering adsorption/desorption thermal effect[J]. Journal of Mining & Safety Engineering,2020,37(6):1282−1290.
[23] 邓存宝,凡永鹏,张勋. 煤层中封存CO2的流–固–热耦合数值模拟研究[J]. 工程热物理学报,2019,40(12):2879−2886.
DENG Cunbao,FAN Yongpeng,ZHANG Xun. The numerical simulation of geological sequestration of CO2 in coal seams based on hydraulic−mechanical−thermal coupled model[J]. Journal of Engineering Thermophysics,2019,40(12):2879−2886.
[24] KONG Xiangguo,WANG Enyuan,LIU Quanlin,et al. Dynamic permeability and porosity evolution of coal seam rich in CBM based on the flow–solid coupling theory[J]. Journal of Natural Gas Science and Engineering,2017,40:61−71.
[25] CONNELL L D. Coupled flow and geomechanical processes during gas production from coal seams[J]. International Journal of Coal Geology,2009,79(1/2):18–28.
[26] 刘建军. 煤层气热–流–固耦合渗流的数学模型[J]. 武汉工业学院学报,2002(2):91−94.
LIU Jianjun. Mathematic models for thermo–hydro–mechanical coupled flow of coal–bed methane[J]. Journal of Wuhan Polytechnic University,2002(2):91−94.
[27] LIU Qingquan,CHENG Yuanping,ZHOU Hongxing,et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects[J]. Rock Mechanics and Rock Engineering,2015,48(3):1163−1180.
[28] KLINKENBERG L J. The permeability of porous media to liquids and gases[J]. SOCAR Proceedings,1941,2(2):200−213.
[29] FAN Yongpeng,DENG Cunbao,ZHANG Xun,et al. Numerical study of CO2–enhanced coalbed methane recovery[J]. International Journal of Greenhouse Gas Control,2018,76:12−23.
[30] 刘清泉,程远平,李伟,等. 深部低透气性首采层煤与瓦斯气固耦合模型[J]. 岩石力学与工程学报,2015,34(增刊1):2749−2758.
LIU Qingquan,CHENG Yuanping,LI Wei,et al. Mathematical model of coupled gas flow and coal deformation process in low–permeability and first mined coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):2749−2758.
[31] FANG Huihuang,SANG Shuxun,LIU Shiqi. The coupling mechanism of the thermal−hydraulic−mechanical fields in CH4–bearing coal and its application in the CO2–enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering,2019,181:106177.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons