Coal Geology & Exploration
Abstract
Underground salt cavern is an effective geological body for CO2 storage. The leakage of CO2 along the weak interlayer of salt rock and the interface of salt layer and interlayer is the key to restrict the safe storage of CO2 in underground salt cavern. A fluid-solid coupling mathematical model of CO2 storage in bedded salt cavern gas storage was established based on the CO2 salt cavern storage in Jintan area of Subei basin. On this basis, the leakage and migration law of CO2 in salt rock and mudstone interlayer, as well as its influence on CO2 safe storage, was analyzed. Meanwhile, the dynamic response characteristics of the permeability of salt rock and mudstone interlayer were discussed. The results show that the permeability is the key factor of CO2 migration rate and leakage range in salt strata. Under the influence of permeability, the CO2 migration rate and leakage range in the mudstone interlayer are greater than those in the salt rock. However, with the extension of the CO2 storage time, the CO2 migration rate and pressure increase in the salt rock and mudstone interlayer decrease in both, and tend to be stable as the CO2 pressure spreads to the simulation boundary. The dynamic change of permeability is the result under the combined action of the negative effect of overlying formation pressure and the positive effect of the CO2 pressure in salt strata, and affected by the mechanical properties of the salt rock and mudstone interlayer. When the CO2 storage time is less than 3 years, the overlying formation pressure is the main controlling factor for the decrease of the salt rock permeability. With the extension of the CO2 storage time, the influence of CO2 pressure in the salt rock on the salt rock permeability gradually dominates, making the permeability of salt rock recover within the CO2 influence range. Compared with salt rock, the elastic modulus of mudstone interlayer is smaller, while the influence of overlying formation pressure and CO2 pressure on its permeability is more significant. The permeability of mudstone interlayer is generally higher than that of salt rock, and CO2 mainly migrates and leaks along the mudstone interlayer. Therefore, the influence of mudstone interlayer should be fully considered during the site selection, construction and operation of CO2 salt cavern storage, and proper protection and monitoring should be carried out to avoid CO2 leakage along mudstone interlayer. Although the CO2 storage pressure in the salt cavern has no significant effect on the migration rate and leakage range of CO2 in salt strata, the high gas storage pressure increases the CO2 pressure in salt strata within the CO2 influence range, resulting in significant permeability recovery of the salt rock and mudstone interlayer, which indirectly affects the migration and leakage law of CO2 in salt strata. Therefore, the influence of permeability and mechanical strength of salt rock and mudstone interlayer should be fully considered during the setting of CO2 storage pressure.
Keywords
salt rock cavern, mudstone interlayer, CO2 storage, permeability, Subei Basin
DOI
10.12363/issn.1001-1986.22.09.0666
Recommended Citation
ZONG Shi, LIU Shiqi, XU Hui,
et al.
(2023)
"Numerical simulation of CO2 storage in bedded salt rock storage cavern in Subei Basin,"
Coal Geology & Exploration: Vol. 51:
Iss.
3, Article 47.
DOI: 10.12363/issn.1001-1986.22.09.0666
Available at:
https://cge.researchcommons.org/journal/vol51/iss3/47
Reference
[1] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 北京:生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021.
[2] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.
SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
[3] 魏宁,刘胜男,李小春. 中国煤化工行业开展CO2强化深部咸水开采技术的潜力评价[J]. 气候变化研究进展,2021,17(1):70−78.
WEI Ning,LIU Shengnan,LI Xiaochun. Evaluation on potential of CO2 enhanced water recovery deployment in China’s coal chemical industry[J]. Climate Change Research,2021,17(1):70−78.
[4] 孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20.
SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20.
[5] 桑树勋,刘世奇,王文峰,等. 深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科学出版社,2020.
[6] 桑树勋,王冉,周效志,等. 论煤地质学与碳中和[J]. 煤田地质与勘探,2021,49(1):1−11.
SANG Shuxun,WANG Ran,ZHOU Xiaozhi,et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration,2021,49(1):1−11.
[7] 谢凌志,周宏伟,谢和平. 盐岩CO2处置相关研究进展[J]. 岩土力学,2009,30(11):3324−3330.
XIE Lingzhi,ZHOU Hongwei,XIE Heping. Research advance of CO2 storage in rock salt caverns[J]. Rock and Soil Mechanics,2009,30(11):3324−3330.
[8] DUSSEAULT M B,BACHU S,ROTHENBURG L. Sequestration of CO2 in salt caverns[J]. The Journal of Canadian Petroleum Technology,2004,43(11):49−55.
[9] BACHU S,DUSSEAULT M B. Underground injection of carbon dioxide in salt beds[J]. Developments in Water Science,2005,52(5):637−648.
[10] 刘红樱,姜月华,杨国强,等. 长江经济带岩盐矿特征与盐穴储库适宜性评价[J]. 中国地质调查,2019,6(5):89−98.
LIU Hongying,JIANG Yuehua,YANG Guoqiang,et al. Characteristics of rock salt mines and suitability evaluation of salt cave storages in Yangtze River Economic Zone[J]. Geological Survey of China,2019,6(5):89−98.
[11] 巴金红,康延鹏,姜海涛,等. 国内盐穴储气库老腔利用现状及展望[J]. 石油化工应用,2020,39(7):1−5.
BA Jinhong,KANG Yanpeng,JIANG Haitao,et al. Present situation and prospect of the utilization of old cavity in domestic salt cavern gas storage[J]. Petrochemical Industry Application,2020,39(7):1−5.
[12] XIONG Jun,HUANG Xiaolan,MA Hongling. Gas leakage mechanism in bedded salt rock storage cavern considering damaged interface[J]. Petroleum,2015,1(4):366−372.
[13] HUANG Xiaolan,XIONG Jun. Numerical simulation of gas leakage in bedded salt rock storage cavern[J]. Procedia Engineering,2011,12:254−259.
[14] LIU Wei,ZHANG Zhixin,FAN Jinyang,et al. Research on gas leakage and collapse in the cavern roof of underground natural gas storage in thinly bedded salt rocks[J]. Journal of Energy Storage,2020,31:101669.
[15] 陈卫忠,谭贤君,伍国军,等. 含夹层盐岩储气库气体渗透规律研究[J]. 岩石力学与工程学报,2009,28(7):1297−1304.
CHEN Weizhong,TAN Xianjun,WU Guojun,et al. Research on gas seepage law in laminated salt rock gas storage[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1297−1304.
[16] 杨春和,梁卫国,魏东吼,等. 中国盐岩能源地下储存可行性研究[J]. 岩石力学与工程学报,2005,24(24):4409−4417.
YANG Chunhe,LIANG Weiguo,WEI Donghou,et al. Investigation on possibility of energy storage in salt rock in China[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(24):4409−4417.
[17] 王贵君,刘朝鹏,介少龙,等. 考虑流–固耦合的天然气盐岩储库渗流特性研究[J]. 地下空间与工程学报,2016,12(增刊2):470−474.
WANG Guijun,LIU Zhaopeng,JIE Shaolong,et al. Study on seepage characteristics of natural gas reservoir in salt rock considering fluid–sold coupling[J]. Chinese Journal of Underground Space and Engineering,2016,12(Sup.2):470−474.
[18] 赵延林. 层状岩盐储库气体渗漏固气耦合模型及储库稳定性研究[D]. 太原:太原理工大学,2006.
ZHAO Yanlin. Study on the solid and gas coupling model of gas seepage in layered salt rock storage and the stability of storage[D]. Taiyuan:Taiyuan University of Technology,2006.
[19] 岳志国. 盐穴地下能源储备库溶腔形态探测和稳定性评价[D]. 石家庄:石家庄铁道大学,2021.
YUE Zhiguo. Morphology detection and stability evaluation of salt cave underground energy storage[D]. Shijiazhuang:Shijiazhuang Tiedao University,2021.
[20] 王新胜. 盐岩储气库运营期稳定性研究[D]. 重庆:重庆大学,2009.
WANG Xinsheng. Study on operation period stability of gas storage of salt rock[D]. Chongqing:Chongqing University,2009.
[21] 黄孟云,刘伟,施锡林. 金坛盐矿工程地质特性研究[J]. 土工基础,2014,27(6):92−95.
HUANG Mengyun,LIU Wei,SHI Xilin. Engineering geology characteristics of Jintan salt mine[J]. Soil Engineering and Foundation,2014,27(6):92−95.
[22] 魏东吼. 金坛盐穴地下储气库造腔工程技术研究[D]. 青岛:中国石油大学(华东),2008.
WEI Donghou. Engineering technology of cavity making in Jintan salt caverns underground gas storage[D]. Qingdao:China University of Petroleum (East China),2008.
[23] 谭贤君,陈卫忠,杨建平,等. 盐岩储气库温度–渗流–应力–损伤耦合模型研究[J]. 岩土力学,2009,30(12):3633−3641.
TAN Xianjun,CHEN Weizhong,YANG Jianping,et al. Study of THM–damage coupling model of gas storage in salt rock with interlayer[J]. Rock and Soil Mechanics,2009,30(12):3633−3641.
[24] 刘世奇,方辉煌,桑树勋,等. 基于多物理场耦合求解的煤层CO2–ECBM数值模拟研究[J]. 煤炭科学技术,2019,47(9):51−59.
LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation study on coal seam CO2–ECBM based on multi–physics fields coupling solution[J]. Coal Science and Technology,2019,47(9):51−59.
[25] 刘世奇,方辉煌,桑树勋,等. 沁水盆地南部煤层气直井合层排采产气效果数值模拟[J]. 煤田地质与勘探,2022,50(6):20−31.
LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. Coal Geology & Exploration,2022,50(6):20−31.
[26] 马林建,刘新宇,马淑娜,等. 深部盐岩含夹层地层初始地应力场模拟分析[J]. 解放军理工大学学报(自然科学版),2009,10(6):604−609.
MA Linjian,LIU Xinyu,MA Shuna,et al. Numerical analysis of in–situ ground stress in deep rock salt stratum containing mudstone inter–layers[J]. Journal of PLA University of Science and Technology(Natural Science Edition),2009,10(6):604−609.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons