Coal Geology & Exploration
Abstract
The effective prevention and control of coal and gas outbursts have always been a challenge for safe coal mining in China, and their prerequisite and basis are in-depth research on the coal and gas outburst mechanism. This study expatiated the efforts and achievements of China made in research on the coal and gas outburst mechanism over the past 70 years, which can be divided into four stages, namely active exploration (1955‒1977), the establishment of the theoretical foundation (1978‒2002), rapid development (2003‒2015), and stable development (2016 to the present). This study explored the hot research topics and frontier trends of the coal and gas outburst mechanism based on the bibliometric method and the analysis of knowledge graphs. Moreover, this study systematically summarized the research progress in the coal and gas outburst mechanism in China from the perspective of theoretical hypothesis, physical simulation, and numerical simulation. Regarding theoretical hypothesis, new viewpoints and theories represented by the rheological hypothesis, the spherical shell instability theory, and the mechanistic effect hypothesis have been formed based on the hypothesis of comprehensive effects and the actual conditions of coal mines in China, laying a foundation for the theoretical study of the coal and gas outburst mechanism. Regarding physical simulation, extensive experimental studies have been conducted focusing on the major factors controlling coal and gas outbursts, the evolution of multi-physical fields, energy conversion, instability conditions, geological structures and tectonically deformed coal, and disaster-causing mechanism of coal-gas two-phase flow. As a result, the occurrence conditions, development process, evolutionary patterns, and influencing factors of coal and gas outbursts have been roughly determined. Regarding numerical simulation, simulation studies have been carried out on coal seams suffering coal and gas outbursts, geological structures, and the coal-gas two-phase flow in coal and gas outbursts. However, the simulation analysis of the whole process of coal and gas outbursts is yet to be achieved due to the complex process and influencing factors of the outbursts. The theoretical system of coal and gas outbursts with Chinese characteristics has been initially formed. However, frequent coal and gas outbursts still indicate the severe situation of the prevention and control of the outbursts. By combining the study status and development trend, this study proposed further studying the whole-process, total-factor, and full-spatio-temporal coupling evolutionary process of coal and gas outbursts, analyzing the multi-scale rheological behavior of gas-bearing coal, and exploring the energy storage and dynamic release processes of coal seams. Moreover, it is necessary to reveal the forming mechanisms of complex and secondary disasters and, accordingly, to determine the coupling evolution mechanism, mechanical models, energy models, and catastrophe models of coal and gas outbursts. On this basis, it is suggested to carry out physical simulation experiments and whole-process numerical simulations and inversion of typical coal and gas outbursts under complex strata and to achieve real-time monitoring and continuous warning of the outbursts.
Keywords
coal and gas outburst, outburst mechanism, knowledge graph, theoretical hypothesis, physical simulation, numerical simulation, research progress
DOI
10.12363/issn.1001-1986.23.02.0054
Recommended Citation
ZHANG Chaolin, WANG Peizhong, WANG Enyuan,
et al.
(2023)
"Coal and gas outburst mechanism: Research progress and prospect in China over the past 70 years,"
Coal Geology & Exploration: Vol. 51:
Iss.
2, Article 5.
DOI: 10.12363/issn.1001-1986.23.02.0054
Available at:
https://cge.researchcommons.org/journal/vol51/iss2/5
Reference
[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. http://www.stats.gov.cn/tjsj/zxfb/202302/t20230227_1918980.html.2023.2.28.
[2] 国家能源局. 数读2022年能源成绩单[EB/OL]. http://www.nea.gov.cn/2022–12/31/c_1310687589.htm. 2022-12-31.
[3] 张超林, 许江, 彭守建, 等. 煤与瓦斯突出及其防控物理模拟试验研究[M]. 徐州: 中国矿业大学出版社, 2020.
[4] 林柏泉, 杨威. 煤矿瓦斯动力灾害及其治理[M]. 徐州: 中国矿业大学出版社, 2018.
[5] 张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134−141.
ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial–temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134−141.
[6] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.
XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
[7] 王恩元,汪皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45.
WANG Enyuan,WANG Hao,LIU Xiaofei,et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology,2020,48(1):39−45.
[8] 汪北方,梁冰,张晶,等. 红山煤矿石门揭突出煤层综合防突技术[J]. 煤田地质与勘探,2019,47(5):86−93.
WANG Beifang,LIANG Bing,ZHANG Jing,et al. Comprehensive outburst prevention technology of outburst–prone coal seam uncovered by crossdrift in Hongshan coal mine[J]. Coal Geology & Exploration,2019,47(5):86−93.
[9] 钱鸣皋. 介绍煤及瓦斯突出的性质与力学作用的现代学说[J]. 北京矿业学院学报,1955(3):92−100.
QIAN Minggao. Modern theory of the properties and mechanical effects of coal and gas outburst[J]. Journal of Beijing Institute of Mining and Technology,1955(3):92−100.
[10] 李中锋. 煤与瓦斯突出机理及其发生条件评述[J]. 煤炭科学技术,1997,25(11):44−47.
LI Zhongfeng. Review of coal and gas outburst mechanism and its occurrence conditions[J]. Coal Science and Technology,1997,25(11):44−47.
[11] 朱连山. 煤与瓦斯突出机理浅析[J]. 矿业安全与环保,2002,29(2):23−25.
ZHU Lianshan. Analysis of coal and gas outburst mechanism[J]. Mining Safety & Environmental Protection,2002,29(2):23−25.
[12] 李希建,林柏泉. 煤与瓦斯突出机理研究现状及分析[J]. 煤田地质与勘探,2010,38(1):7−13.
LI Xijian,LIN Baiquan. Status of research and analysis on coal and gas outburst mechanism[J]. Coal Geology & Exploration,2010,38(1):7−13.
[13] 李祥春,聂百胜,王龙康,等. 多场耦合作用下煤与瓦斯突出机理分析[J]. 煤炭科学技术,2011,39(5):64−66.
LI Xiangchun,NIE Baisheng,WANG Longkang,et al. Analysis on coal and gas outburst mechanism under multi field coupling action[J]. Coal Science and Technology,2011,39(5):64−66.
[14] 刘业娇,袁亮,薛俊华,等. 煤与瓦斯突出机理和模拟试验研究现状及发展趋势[J]. 工矿自动化,2018,44(2):43−50.
LIU Yejiao,YUAN Liang,XUE Junhua,et al. Research status and development trend of mechanism and simulation test of coal and gas outburst[J]. Industry and Mine Automation,2018,44(2):43−50.
[15] 高魁,乔国栋,刘泽功,等. 煤与瓦斯突出机理分类研究构想及其应用探讨[J]. 采矿与安全工程学报,2019,36(5):1043−1051.
GAO Kui,QIAO Guodong,LIU Zegong,et al. On classification conception of coal and gas outburst mechanism and its application[J]. Journal of Mining & Safety Engineering,2019,36(5):1043−1051.
[16] MA Yankun,NIE Baisheng,HE Xueqiu,et al. Mechanism investigation on coal and gas outburst: An overview[J]. International Journal of Minerals, Metallurgy and Materials,2020,27(7):872−887.
[17] 程远平. 煤矿瓦斯防治理论与工程应用[M]. 徐州: 中国矿业大学出版社, 2010.
[18] 卫修君, 林柏泉. 煤岩瓦斯动力灾害发生机理及综合治理技术[M]. 北京: 科学出版社, 2009.
[19] 罗文柯. 上覆巨厚火成岩下煤与瓦斯突出灾害危险性评估与防治对策研究[D]. 长沙: 中南大学, 2010.
LUO Wenke. Study on hazards assessment and prevention countermeasures of coal and gas outburst under overlying huge thick igneous rock[D]. Changsha: Central South University, 2010.
[20] 章梦涛,徐曾和,潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报,1991,16(4):48−53.
ZHANG Mengtao,XU Zenghe,PAN Yishan,et al. A united instability theory on coal (rock) burst and outburst[J]. Journal of China Coal Society,1991,16(4):48−53.
[21] 博利申斯基. 煤与瓦斯突出预测方法和防治措施[M]. 魏风清, 张建国, 译. 北京: 煤炭工业出版社, 2003.
[22] 李建铭. 煤与瓦斯突出防治技术手册[M]. 北京: 地质出版社, 2006.
[23] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322.
WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297−322.
[24] 梁运培, 郑梦浩, 李全贵, 等. 我国煤与瓦斯突出预测与预警研究综述[J/OL]. 煤炭学报, 2022: 1–24 [2023-03-09]. https://doi.org/10.13225/j.cnki.jccs.2022.0965.
LIANG Yunpei, ZHENG Menghao, LI Quangui, et al. A review on prediction and early warning methods of coal and gas outburst[J/OL]. Journal of China Coal Society, 2022: 1–24 [2023-03-09]. https://doi.org/10.13225/j.cnki.jccs.2022.0965.
[25] 肖知国,王兆丰. 煤层注水防治煤与瓦斯突出机理的研究现状与进展[J]. 中国安全科学学报,2009,19(10):150−158.
XIAO Zhiguo,WANG Zhaofeng. Status and progress of studies on mechanism of preventing coal and gas outburst by coal seam infusion[J]. China Safety Science Journal,2009,19(10):150−158.
[26] 蒋仲安,曾发镔. 基于CNKI文献计量学的矿山粉尘研究可视化知识图谱分析[J]. 矿业安全与环保,2022,49(4):37−44.
JIANG Zhong’an,ZENG Fabin. Visualization knowledge graph analysis of mine dust research based on CNKI bibliometrics[J]. Mining Safety & Environmental Protection,2022,49(4):37−44.
[27] 杨洋,张文博,张建敏,等. 基于Citespace文献计量工具的数字矿山与矿山安全文献综述[J]. 矿业科学学报,2021,6(1):124−138.
YANG Yang,ZHANG Wenbo,ZHANG Jianmin,et al. A survey of digital mine and mine safety management based on Citespace[J]. Journal of Mining Science and Technology,2021,6(1):124−138.
[28] 郑德志,任世华. 我国煤矿安全生产发展历程及演进趋势[J]. 能源与环保,2019,41(11):1−6.
ZHENG Dezhi,REN Shihua. Development history and evolution trend of coal mine safety production in China[J]. China Energy and Environmental Protection,2019,41(11):1−6.
[29] 朱彤. 中国能源工业七十年回顾与展望[J]. 中国经济学人,2019,14(1):34−65.
ZHU Tong. Seven decades of China’s energy industry development: Retrospect and outlook[J]. China Economist,2019,14(1):34−65.
[30] 《中国煤炭志》编纂委员会. 《中国煤炭志Ÿ综合卷》[M]. 北京: 煤炭工业出版社, 1998.
[31] 张农,阚甲广,王朋. 我国废弃煤矿资源现状与分布特征[J]. 煤炭经济研究,2019,39(5):4−8.
ZHANG Nong,KAN Jiaguang,WANG Peng. Study on resources and distribution of abandoned mines in China[J]. Coal Economic Research,2019,39(5):4−8.
[32] WILSON P A C. Instantaneous outbursts of carbon dioxide in coal mines in Lower Silesia[J]. The American Institute of Mining and Metallurgical Engineers,1931,99:88−136.
[33] SHEPHERD J,RIXON L K,GRIFFITHS L. Outbursts and geological structures in coal mines: A review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(4):267−283.
[34] LITWINISZYN J. A model for the initiation of coal–gas outbursts[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985,22(1):39−46.
[35] PATERSON L. A model for outbursts in coal[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(4):327−332.
[36] RICE G S. Introductory notes on origin of instantaneous outbursts of gas in certain coal mines of Europe and Western Canada[J]. The American Institute of Mining and Metallurgical Engineers,1931(94):75−87.
[37] PESCOD R. Rock bursts in the western portions of the South Wales coalfield[J]. The Institute of Mining Engineers,1948,107:512−549.
[38] FARMER I W,POOLEY F D. A hypothesis to explain the occurrence of outbursts in coal, based on a study of west wales outburst coal[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1967,4(2):189−193.
[39] BELOV V I. New explanation of sudden outbursts of methane[J]. Gornyi Zhurnal, 1931(6): 46–47
[40] KHRISTIANOVICH S A,KOVALENKO Y F. Measurement of gas pressure in coal seams[J]. Soviet Mining Science,1988,24(3):181−199.
[41] KHODOT B B. 煤与瓦斯突出[M]. 宋士钊, 王佑安, 译. 北京: 中国工业出版社, 1966.
[42] WOLD M B, CHOI X S K. Outburst mechanisms: Coupled fluid flow−geomechanical modelling of mine development: ACARP Project C6024[R]. CSIRO Petroleum, 1999: 94.
[43] 于不凡. 谈煤和瓦斯突出机理[J]. 煤炭科学技术,1979(8):34−42.
YU Bufan. Talk about coal and gas outburst mechanism[J]. Coal Science and Technology,1979(8):34−42.
[44] 于不凡. 煤矿瓦斯灾害防治及利用技术手册[M]. 北京: 煤炭工业出版社, 2005.
[45] 李萍丰. 浅谈煤与瓦斯突出机理的假说: 二相流体假说[J]. 煤矿安全,1989,20(11):29−35.
LI Pingfeng. Discussion on the hypothesis of coal and gas outburst mechanism: Two−phase fluid hypothesis[J]. Safety in Coal Mines,1989,20(11):29−35.
[46] 周世宁,何学秋. 煤和瓦斯突出机理的流变假说[J]. 中国矿业大学学报,1990,19(2):1−8.
ZHOU Shining,HE Xueqiu. Rheological hypothesis of coal and methane outburst mechanism[J]. Journal of China University of Mining & Technology,1990,19(2):1−8.
[47] 何学秋. 含瓦斯煤岩流变动力学[M]. 徐州: 中国矿业大学出版社, 1995.
[48] 蒋承林,俞启香. 煤与瓦斯突出机理的球壳失稳假说[J]. 煤矿安全,1995,26(2):17−25.
JIANG Chenglin,YU Qixiang. Spherical shell instability hypothesis for coal and gas outburst mechanism[J]. Safety in Coal Mines,1995,26(2):17−25.
[49] 梁冰,章梦涛,潘一山,等. 煤和瓦斯突出的固流耦合失稳理论[J]. 煤炭学报,1995,20(5):492−496.
LIANG Bing,ZHANG Mengtao,PAN Yishan,et al. Theory of instability of flow fixation coupling for coal and gas outburst[J]. Journal of China Coal Society,1995,20(5):492−496.
[50] 吕绍林,何继善. 关键层–应力墙瓦斯突出机理[J]. 重庆大学学报(自然科学版),1999,22(6):80−84.
LYU Shaolin,HE Jishan. Key layer and stress dike mechanism of coal and gas outbursts[J]. Journal of Chongqing University (Natural Science Edition),1999,22(6):80−84.
[51] 鲜学福,辜敏,李晓红,等. 煤与瓦斯突出的激发和发生条件[J]. 岩土力学,2009,30(3):577−581.
XIAN Xuefu,GU Min,LI Xiaohong,et al. Excitation and occurrence conditions for coal and gas outburst[J]. Rock and Soil Mechanics,2009,30(3):577−581.
[52] 刘保县. 延迟突出煤的物理力学特征和煤延迟突出机理研究[D]. 重庆: 重庆大学, 2000.
LIU Baoxian. Study on physical and mechanical characteristics of delayed outburst coal and its mechanism[D]. Chongqing: Chongqing University, 2000.
[53] 郭德勇,韩德馨. 煤与瓦斯突出粘滑机理研究[J]. 煤炭学报,2003,28(6):598−602.
GUO Deyong,HAN Dexin. The stick–slip mechanism of coal and gas outburst[J]. Journal of China Coal Society,2003,28(6):598−602.
[54] 胡千庭,周世宁,周心权. 煤与瓦斯突出过程的力学作用机理[J]. 煤炭学报,2008,33(12):1368−1372.
HU Qianting,ZHOU Shining,ZHOU Xinquan. Mechanical mechanism of coal and gas outburst process[J]. Journal of China Coal Society,2008,33(12):1368−1372.
[55] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报,2016,41(1):105−112.
PAN Yishan. Integrated study on compound dynamic disaster of coal–gas outburst and rockburst[J]. Journal of China Coal Society,2016,41(1):105−112.
[56] 马念杰,赵希栋,赵志强,等. 掘进巷道蝶型煤与瓦斯突出机理猜想[J]. 矿业科学学报,2017,2(2):137−149.
MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al. Conjecture about mechanism of butterfly–shape coal and gas outburst in excavation roadway[J]. Journal of Mining Science and Technology,2017,2(2):137−149.
[57] 张代钧,鲜学福. 煤微观结构与瓦斯突出关系的初步研究[J]. 西安矿业学院学报,1991,41(4):41−45.
ZHANG Daijun,XIAN Xuefu. Primary study of the relationship between coal microstructure and outburst of gas in coal mine[J]. Journal of Xi’an Mining Institute,1991,41(4):41−45.
[58] 王继仁,邓存宝,邓汉忠. 煤与瓦斯突出微观机理研究[J]. 煤炭学报,2008,33(2):131−135.
WANG Jiren,DENG Cunbao,DENG Hanzhong. Study on the microcosmic mechanism for coal–gas outburst[J]. Journal of China Coal Society,2008,33(2):131−135.
[59] 程远平,胡彪. 微孔填充: 煤中甲烷的主要赋存形式[J]. 煤炭学报,2021,46(9):2933−2948.
CHENG Yuanping,HU Biao. Main occurrence form of methane in coal: Micropore filling[J]. Journal of China Coal Society,2021,46(9):2933−2948.
[60] 聂百胜,马延崑,何学秋,等. 煤与瓦斯突出微观机理探索研究[J]. 中国矿业大学学报,2022,51(2):207−220.
NIE Baisheng,MA Yankun,HE Xueqiu,et al. Micro–scale mechanism of coal and gas outburst: A preliminary study[J]. Journal of China University of Mining & Technology,2022,51(2):207−220.
[61] 马中飞,俞启香. 煤与瓦斯承压散体失控突出机理的初步研究[J]. 煤炭学报,2006,31(3):329−333.
MA Zhongfei,YU Qixiang. The pilot study on outburst mechanism for compression disseminated values of coal and gas out of control[J]. Journal of China Coal Society,2006,31(3):329−333.
[62] 裴常心,姚建,田冬梅,等. 煤与瓦斯突出气球模型理论探讨[J]. 煤矿安全,2009,40(6):76−78.
PEI Changxin,YAO Jian,TIAN Dongmei,et al. Theoretical discussion on balloon model of coal and gas outburst[J]. Safety in Coal Mines,2009,40(6):76−78.
[63] 谢焰,陈萍. 煤与瓦斯突出的渗透失稳机理分析[J]. 煤炭科学技术,2011,39(3):63−66.
XIE Yan,CHEN Ping. Analysis on penetration stability lost mechanism of coal and gas outburst[J]. Coal Science and Technology,2011,39(3):63−66.
[64] 郭保华. 煤与瓦斯突出的压力容器物理爆炸假说[J]. 河南理工大学学报(自然科学版),2012,31(3):261−267.
GUO Baohua. Pressure vessel physical explosion hypothesis for coal and gas outburst[J]. Journal of Henan Polytechnic University (Natural Science),2012,31(3):261−267.
[65] 许满贵,董康乾,董养存,等. 煤岩与瓦斯微元体破坏突出机理[J]. 西安科技大学学报,2014,34(3):249−254.
XU Mangui,DONG Kangqian,DONG Yangcun,et al. Mechanism of coal and gas outburst with microelement destruction[J]. Journal of Xi’an University of Science and Technology,2014,34(3):249−254.
[66] 冯明伟. 旋流场假说: 煤与瓦斯突出机理新探[J]. 矿业安全与环保,2016,43(4):102−104.
FENG Mingwei. Hypothesis of swirl flow field: A new exploration of coal and gas outburst mechanism[J]. Mining Safety & Environmental Protection,2016,43(4):102−104.
[67] 舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致灾机制[J]. 岩石力学与工程学报,2017,36(2):347−356.
SHU Longyong,WANG Kai,QI Qingxin,et al. Key structural body theory of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):347−356.
[68] 袁亮,薛阳,王汉鹏,等. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治,2020,2(1):1−10.
YUAN Liang,XUE Yang,WANG Hanpeng,et al. New progress in physical simulation experiment of coal and gas outburst[J]. Hazard Control in Tunnelling and Underground Engineering,2020,2(1):1−10.
[69] 韩颖,吕帅,张飞燕,等. 煤与瓦斯突出模拟试验研究进展及展望[J]. 河南理工大学学报 (自然科学版),2022,41(1):1−8.
HAN Ying,LYU Shuai,ZHANG Feiyan,et al. Research progress and prospect of coal and gas outburst simulation experiments[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(1):1−8.
[70] KHODOT V V. The mechanism of sudden outbursts[J]. Ugol,1951,12(3):6−11.
[71] 邓全封,栾永祥,王佑安. 煤与瓦斯突出模拟试验[J]. 煤矿安全,1989,20(11):5−10.
DENG Quanfeng,LUAN Yongxiang,WANG You’an. Coal and gas outburst simulation test[J]. Safety in Coal Mines,1989,20(11):5−10.
[72] 张超林,许江,彭守建,等. 煤与瓦斯突出物理模拟实验研究进展及展望[J]. 煤田地质与勘探,2018,46(4):28−34.
ZHANG Chaolin,XU Jiang,PENG Shoujian,et al. Advances and prospects in physical simulation of coal and gas outburst[J]. Coal Geology & Exploration,2018,46(4):28−34.
[73] 蔡成功. 煤与瓦斯突出三维模拟理论及实验研究[C]//瓦斯地质研究与应用–中国煤炭学会瓦斯地质专业委员会第三次全国瓦斯地质学术研讨会. 北京: 煤炭工业出版社, 2003: 113–118.
[74] 蔡成功. 煤与瓦斯突出三维模拟实验研究[J]. 煤炭学报,2004,29(1):66−69.
CAI Chenggong. Experimental study on 3–D simulation of coal and gas outburst[J]. Journal of China Coal Society,2004,29(1):66−69.
[75] 许江,陶云奇,尹光志,等. 煤与瓦斯突出模拟试验台的研制与应用[J]. 岩石力学与工程学报,2008,27(11):2354−2362.
XU Jiang,TAO Yunqi,YIN Guangzhi,et al. Development and application of coal and gas outburst simulation test device[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2354−2362.
[76] 许江,陶云奇,尹光志,等. 煤与瓦斯突出模拟试验台的改进及应用[J]. 岩石力学与工程学报,2009,28(9):1804−1809.
XU Jiang,TAO Yunqi,YIN Guangzhi,et al. Amelioration and application of coal and gas outburst simulation experiment device[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1804−1809.
[77] 魏建平,朱会启,温志辉,等. 煤与瓦斯突出冲击波传播规律实验研究[J]. 煤,2010,19(8):11−13.
WEI Jianping,ZHU Huiqi,WEN Zhihui,et al. Coal and gas outburst shock wave propagation experiments[J]. Coal,2010,19(8):11−13.
[78] 陈永超. 煤与瓦斯突出冲击波传播规律的实验研究[D]. 焦作: 河南理工大学, 2009.
CHEN Yongchao. Experimental study on shock wave propagation law of coal and gas outburst[D]. Jiaozuo: Henan Polytechnic University, 2009.
[79] 赵志刚,胡千庭,耿延辉. 煤与瓦斯突出模拟试验系统的设计[J]. 矿业安全与环保,2009,36(5):9−11.
ZHAO Zhigang,HU Qianting,GENG Yanhui. Design of simulation test system for coal and gas outburst[J]. Mining Safety & Environmental Protection,2009,36(5):9−11.
[80] 张春华. 石门揭突出煤层围岩力学特性模拟试验研究[D]. 淮南: 安徽理工大学, 2010.
ZHANG Chunhua. Simulation experiment on the mechanical characteristics during outbursting coal seam uncovered by crosscut[D]. Huainan: Anhui University of Science and Technology, 2010.
[81] 高魁,刘泽功,刘健. 基于相似模拟和地质力学模型试验的突出装置研制及应用[J]. 岩土力学,2015,36(3):711−718.
GAO Kui,LIU Zegong,LIU Jian. Design of outburst experiment device based on similar simulation and geomechanical model test and its application[J]. Rock and Soil Mechanics,2015,36(3):711−718.
[82] 欧建春. 煤与瓦斯突出演化过程模拟实验研究[D]. 徐州: 中国矿业大学, 2012.
OU Jianchun. Study on simulation experiments of coal and gas outburst evolution[D]. Xuzhou: China University of Mining and Technology, 2012.
[83] 欧建春,王恩元,徐文全,等. 钻孔施工诱发煤与瓦斯突出的机理研究[J]. 中国矿业大学学报,2012,41(5):739−745.
OU Jianchun,WANG Enyuan,XU Wenquan,et al. Study of the mechanism of coal and gas outburst induced by drilling[J]. Journal of China University of Mining & Technology,2012,41(5):739−745.
[84] 王刚,程卫民,张清涛,等. 石门揭煤突出模拟实验台的设计与应用[J]. 岩土力学,2012,34(4):1202−1210.
WANG Gang,CHENG Weimin,ZHANG Qingtao,et al. Design of simulation experiment and its application system of outburst in uncovering coal seam in cross–cut[J]. Rock and Soil Mechanics,2012,34(4):1202−1210.
[85] 刘东,许江,尹光志,等. 多场耦合煤矿动力灾害大型模拟试验系统研制与应用[J]. 岩石力学与工程学报,2013,32(5):966−975.
LIU Dong,XU Jiang,YIN Guangzhi,et al. Development and application of multifield coupling testing system for dynamic disaster in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(5):966−975.
[86] 袁瑞甫,李怀珍. 含瓦斯煤动态破坏模拟实验设备的研制与应用[J]. 煤炭学报,2013,38(Sup.1):117−123.
YUAN Ruifu,LI Huaizhen. Development and application of simulation test apparatus for gassy coal dynamic failure[J]. Journal of China Coal Society,2013,38(Sup.1):117−123.
[87] 郭品坤. 煤与瓦斯突出层裂发展机制研究[D]. 徐州: 中国矿业大学, 2014.
GUO Pinkun. Research on laminar spallation mechanism of coal and gas outburst propagation[D]. Xuzhou: China University of Mining and Technology, 2014.
[88] 王汉鹏,张庆贺,袁亮,等. 基于CSIRO模型的煤与瓦斯突出模拟系统与试验应用[J]. 岩石力学与工程学报,2015,34(11):2301−2308.
WANG Hanpeng,ZHANG Qinghe,YUAN Liang,et al. Coal and gas outburst simulation system based on CSIRO model[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2301−2308.
[89] 王雪龙. 基于声发射的煤与瓦斯突出实验研究[D]. 太原: 太原理工大学, 2015.
WANG Xuelong. Based on the acoustic emission of coal and gas outburst experimental study[D]. Taiyuan: Taiyuan University of Technology, 2015.
[90] 罗甲渊. 煤与瓦斯突出的能量源及能量耗散机理研究[D]. 重庆: 重庆大学, 2016.
LUO Jiayuan. Study on energy source and energy dissipation mechanism of coal and gas outburst[D]. Chongqing: Chongqing University, 2016.
[91] 王勇. 含瓦斯煤体一维渗透失稳模拟试验[D]. 淮南: 安徽理工大学, 2016.
WANG Yong. One−dimensional simulation tests on permeation instability of coal seam containing gas[D]. Huainan: Anhui University of Science and Technology, 2016.
[92] 金侃. 煤与瓦斯突出过程中高压粉煤–瓦斯两相流形成机制及致灾特征研究[D]. 徐州: 中国矿业大学, 2017.
JIN Kan. Research on formation mechanism of high pressure pulverized coal–gas two phase flow during outburst and its disaster characteristic[D]. Xuzhou: China University of Mining and Technology, 2017.
[93] 耿加波. 煤与瓦斯突出灾变时空演化及其煤–瓦斯两相流运移特性物理模拟试验研究[D]. 重庆: 重庆大学, 2018.
GENG Jiabo. Physical simulation on evolution of coal and gas outbursts and coal–gas two–phase flow transport characteristics[D]. Chongqing: Chongqing University, 2018.
[94] 周斌. 气–固耦合作用下煤与瓦斯突出多物理场参数演化及其两相流动态响应[D]. 重庆: 重庆大学, 2021.
ZHOU Bin. Multi–parameter evolution of coal and gas outburst and its two–phase flow dynamic response under gas–solid coupling effect[D]. Chongqing: Chongqing University, 2021.
[95] 许江,程亮,周斌,等. 突出过程中煤–瓦斯两相流运移的物理模拟研究[J]. 岩石力学与工程学报,2019,38(10):1945−1953.
XU Jiang,CHENG Liang,ZHOU Bin,et al. Physical simulation of coal–gas two–phase flow migration in coal and gas outburst process[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):1945−1953.
[96] 文光才,孙海涛,曹偈,等. 深井煤岩瓦斯动力灾害模拟实验系统[J]. 煤炭学报,2020,45(1):223−231.
WEN Guangcai,SUN Haitao,CAO Jie,et al. Simulation experiment system of coal and gas dynamic disaster in deep mine and its application in accident analysis[J]. Journal of China Coal Society,2020,45(1):223−231.
[97] 曹偈,孙海涛,戴林超,等. 煤与瓦斯突出动力效应的模拟研究[J]. 中国矿业大学学报,2018,47(1):113−120.
CAO Jie,SUN Haitao,DAI Linchao,et al. Simulation research on dynamic effect of coal and gas outburst[J]. Journal of China University of Mining & Technology,2018,47(1):113−120.
[98] 聂百胜,马延崑,孟筠青,等. 中等尺度煤与瓦斯突出物理模拟装置研制与验证[J]. 岩石力学与工程学报,2018,37(5):1218−1225.
NIE Baisheng,MA Yankun,MENG Junqing,et al. Middle scale simulation system of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1218−1225.
[99] 李文睿,王登科,付启超,等. 考虑动静载加载的含瓦斯煤突出试验系统与应用[J]. 重庆大学学报,2018,41(8):86−99.
LI Wenrui,WANG Dengke,FU Qichao,et al. Experimental system for coal and gas outbursts and its application under static and dynamic loads[J]. Journal of Chongqing University,2018,41(8):86−99.
[100] 李术才,李清川,王汉鹏,等. 大型真三维煤与瓦斯突出定量物理模拟试验系统研发[J]. 煤炭学报,2018,43(Sup.1):121−129.
LI Shucai,LI Qingchuan,WANG Hanpeng,et al. A large–scale three–dimensional coal and gas outburst quantitative physical modeling system[J]. Journal of China Coal Society,2018,43(Sup.1):121−129.
[101] 陈结,潘孝康,姜德义,等. 基于气体驱动煤与瓦斯突出试验系统的研制与应用[J]. 煤炭学报,2018,43(增刊2):460−468.
CHEN Jie,PAN Xiaokang,JIANG Deyi,et al. Development and application of coal and gas outburst test system based on gas driven[J]. Journal of China Coal Society,2018,43(Sup.2):460−468.
[102] 王凯,王亮,杜锋,等. 煤粉粒径对突出瓦斯–煤粉动力特征的影响[J]. 煤炭学报,2019,44(5):1369−1377.
WANG Kai,WANG Liang,DU Feng,et al. Influence of coal powder particle sizes on dynamic characteristics of coal and gas outburst[J]. Journal of China Coal Society,2019,44(5):1369−1377.
[103] 孙胜杰. 深部石门揭煤诱发煤与瓦斯突出模拟试验研究[D]. 阜新: 辽宁工程技术大学, 2019.
SUN Shengjie. Study on simulation test of coal and gas outburst induced by deep rock cross–cut coal uncovering[D]. Fuxin: Liaoning Technical University, 2019.
[104] 唐巨鹏,张昕,潘一山,等. 深部巷道煤与瓦斯突出及冲击演化特征试验研究[J]. 岩石力学与工程学报,2022,41(6):1081−1092.
TANG Jupeng,ZHANG Xin,PAN Yishan,et al. Experimental study on outburst and impact evolution characteristics of coal and gas in deep roadways[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1081−1092.
[105] 袁亮,王伟,王汉鹏,等. 巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J]. 中国矿业大学学报,2020,49(2):205−214.
YUAN Liang,WANG Wei,WANG Hanpeng,et al. A simulation system for coal and gas outburst induced by coal uncovering in roadway excavation[J]. Journal of China University of Mining & Technology,2020,49(2):205−214.
[106] 卢义玉,彭子烨,夏彬伟,等. 深部煤岩工程多功能物理模拟实验系统: 煤与瓦斯突出模拟实验[J]. 煤炭学报,2020,45(增刊1):272−283.
LU Yiyu,PENG Ziye,XIA Binwei,et al. Coal and gas outburst multi–functional physical model testing system of deep coal petrography engineering[J]. Journal of China Coal Society,2020,45(Sup.1):272−283.
[107] 杨雪林. 巷道煤与瓦斯突出抛出物动力学特征研究[D]. 重庆: 重庆大学, 2021.
YANG Xuelin. Study on dynamic characteristics of coal and gas outburst ejecta in roadway[D]. Chongqing: Chongqing University, 2021.
[108] 杨雪林, 文光才, 孙海涛, 等. 煤与瓦斯突出冲击动力效应及致灾特征模拟实验系统研制与应用[J/OL]. 煤炭学报, 2023: 1–19.
2023-03-09]. https: //doi. org/10.13225/j. cnki. jccs. 2022.1318. YANG Xuelin, WEN Guangcai, SUN Haitao, et al. Development and application of simulation experimental system for impactive dynamic effect and disaster–causing characteristics of coal and gas outburst[J/OL]. Journal of China Coal Society, 2023: 1–19 [2023-03-09].https://doi. org/10. 13225/j. cnki. jccs. 2022. 1318.
[109] 刘义,石必明,张煜,等. 煤与瓦斯突出两相流传播特性实验研究[J]. 中国安全生产科学技术,2021,17(7):91−96.
LIU Yi,SHI Biming,ZHANG Yu,et al. Experimental study on propagation characteristics of two–phase flow in coal and gas outburst[J]. Journal of Safety Science and Technology,2021,17(7):91−96.
[110] 刘义. 煤与瓦斯突出过程煤体层裂演化与煤粉运移模拟实验研究[D]. 淮南: 安徽理工大学, 2022.
LIU Yi. Experimental study on the laminar spallation of coal body and pulverized coal migration during coal and gas outburst[D]. Huainan: Anhui University of Science and Technology, 2022.
[111] 张超林,王恩元,王奕博,等. 多功能煤与瓦斯突出模拟试验系统研制与应用[J]. 岩石力学与工程学报,2022,41(5):995−1007.
ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Development and application of multi–functional test system for coal and gas outburst simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):995−1007.
[112] 徐挺. 相似理论与模型试验[M]. 北京: 中国农业机械出版社, 1982.
[113] 陈裕佳,蒋承林,吴爱军. 揭煤突出模拟试验的相似条件研究[J]. 采矿与安全工程学报,2013,30(4):605−609.
CHEN Yujia,JIANG Chenglin,WU Aijun. Similar conditions of outburst simulation test for rock cross–cut coal uncovering[J]. Journal of Mining & Safety Engineering,2013,30(4):605−609.
[114] 张超林. 深部采动应力影响下煤与瓦斯突出物理模拟试验研究[D]. 重庆: 重庆大学, 2015.
ZHANG Chaolin. Physical simulation experiment on coal and gas outburst under deep mining–induced stress[D]. Chongqing: Chongqing University, 2015.
[115] 高魁,刘泽功,刘健. 地应力在石门揭构造软煤诱发煤与瓦斯突出中的作用[J]. 岩石力学与工程学报,2015,34(2):305−312.
GAO Kui,LIU Zegong,LIU Jian. Effect of geostress on coal and gas outburst in the uncovering tectonic soft by cross–cut[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):305−312.
[116] 唐巨鹏,杨森林,王亚林,等. 地应力和瓦斯压力作用下深部煤与瓦斯突出试验[J]. 岩土力学,2014,35(10):2769−2774.
TANG Jupeng,YANG Senlin,WANG Yalin,et al. Experiment of coal and gas outbursts under ground stress and gas pressure in deep mines[J]. Rock and Soil Mechanics,2014,35(10):2769−2774.
[117] 张淑同. 煤与瓦斯突出模拟的材料及系统相似性研究[D]. 淮南: 安徽理工大学, 2015.
ZHANG Shutong. Research on similarity of material and system for coal and gas outburst simulation test[D]. Huainan: Anhui University of Science and Technology, 2015.
[118] 张庆贺,袁亮,王汉鹏,等. 煤与瓦斯突出物理模拟相似准则建立与分析[J]. 煤炭学报,2016,41(11):2773−2779.
ZHANG Qinghe,YUAN Liang,WANG Hanpeng,et al. Establishment and analysis of similarity criteria for physical simulation of coal and gas outburst[J]. Journal of China Coal Society,2016,41(11):2773−2779.
[119] UJIHIRA M,ISOBE T,HIGUEHI K. On the flaking destructive phenomena of porous material induced by involved high pressure gas: Study on coal and gas outbursts[J]. Journal of Mining & Metallurgical Inst. of Japan,1984,100(3):225−257.
[120] 金洪伟. 煤与瓦斯突出发展过程的实验与机理分析[J]. 煤炭学报,2012,37(增刊1):98−103.
JIN Hongwei. Experiment and mechanism analysis of the developing process of coal and gas outburst[J]. Journal of China Coal Society,2012,37(Sup.1):98−103.
[121] 尹光志,赵洪宝,许江,等. 煤与瓦斯突出模拟试验研究[J]. 岩石力学与工程学报,2009,28(8):1674−1680.
YIN Guangzhi,ZHAO Hongbao,XU Jiang,et al. Experimental study of simulation of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1674−1680.
[122] 涂庆毅. 构造煤表观物理结构及煤与瓦斯突出层裂发展机制研究[D]. 徐州: 中国矿业大学, 2019.
TU Qingyi. Study on apparent physical structure of tectonic coal and spallation development mechanism of coal and gas outburst[D]. Xuzhou: China University of Mining and Technology, 2019.
[123] 张建国,魏风清. 含瓦斯煤的突出模拟试验[J]. 矿业安全与环保,2002,29(1):7−9.
ZHANG Jianguo,WEI Fengqing. Simulated outburst test of gas–bearing coal[J]. Mining Safety & Environmental Protection,2002,29(1):7−9.
[124] 苏小鹏. 含瓦斯煤成型条件优化及煤层气开采物理模拟试验研究[D]. 重庆: 重庆大学, 2014.
SU Xiaopeng. Molding condition optimization of coal containing gas and its application in physical simulation of CBM extraction[D]. Chongqing: Chongqing University, 2014.
[125] 康向涛,黄滚,邓博知,等. 模拟原煤的相似材料试验研究[J]. 东北大学学报 (自然科学版),2015,36(1):138−142.
KANG Xiangtao,HUANG Gun,DENG Bozhi,et al. Experimental study on similar material for simulating raw coal[J]. Journal of Northeastern University (Natural Science),2015,36(1):138−142.
[126] 王汉鹏,张庆贺,袁亮,等. 含瓦斯煤相似材料研制及其突出试验应用[J]. 岩土力学,2015,36(6):1676−1682.
WANG Hanpeng,ZHANG Qinghe,YUAN Liang,et al. Development of a similar material for methane–bearing coal and its application to outburst experiment[J]. Rock and Soil Mechanics,2015,36(6):1676−1682.
[127] 张庆贺. 煤与瓦斯突出能量分析及其物理模拟的相似性研究[D]. 济南: 山东大学, 2017.
ZHANG Qinghe. Analysis of coal and gas outburst and research on similarity of physical simulation for it[D]. Jinan: Shandong University, 2017.
[128] 许江,甘青青,蔡果良,等. 二次炭化型煤成型装置及型煤制作方法[J]. 煤炭学报,2022,47(11):4055−4068.
XU Jiang,GAN Qingqing,CAI Guoliang,et al. Thermal forming method and device for secondary carbonized briquette coal[J]. Journal of China Coal Society,2022,47(11):4055−4068.
[129] 彭守建,王瑞芳,许江,等. 二次炭化温度对热压型煤力学性质及微观结构影响的试验研究[J]. 岩土力学,2021,42(5):1221−1229.
PENG Shoujian,WANG Ruifang,XU Jiang,et al. Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot–pressed coal briquette specimens[J]. Rock and Soil Mechanics,2021,42(5):1221−1229.
[130] 陶云奇. 含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D]. 重庆: 重庆大学, 2009.
TAO Yunqi. Study on the gassy coal THM coupling model and coal and gas outburst simulation[D]. Chongqing: Chongqing University, 2009.
[131] 张超林,彭守建,许江,等. 煤与瓦斯突出过程中气压时空演化规律[J]. 岩土力学,2017,38(1):81−90.
ZHANG Chaolin,PENG Shoujian,XU Jiang,et al. Temporospatial evolution of gas pressure during coal and gas outburst[J]. Rock and Soil Mechanics,2017,38(1):81−90.
[132] 周斌,许江,彭守建,等. 突出过程中煤层及巷道多物理场参数动态响应[J]. 煤炭学报,2020,45(4):1385−1397.
ZHOU Bin,XU Jiang,PENG Shoujian,et al. Dynamic response of coal seam and roadway during coal and gas outburst[J]. Journal of China Coal Society,2020,45(4):1385−1397.
[133] 周文杰. 煤与瓦斯突出影响因素的模拟实验研究[D]. 重庆: 重庆大学, 2012.
ZHOU Wenjie. Experimental study on influencing factors of coal and gas outburst[D]. Chongqing: Chongqing University, 2012.
[134] 张庆贺,王汉鹏,李术才,等. 煤与瓦斯突出物理模拟试验中甲烷相似气体的探索[J]. 岩土力学,2017,38(2):479−486.
ZHANG Qinghe,WANG Hanpeng,LI Shucai,et al. Exploration of similar gas like methane in physical simulation test of coal and gas outburst[J]. Rock and Soil Mechanics,2017,38(2):479−486.
[135] 王维忠,陶云奇,许江,等. 不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J]. 重庆大学学报,2010,33(3):82−86.
WANG Weizhong,TAO Yunqi,XU Jiang,et al. Simulation of coal and gas outburst with different gas pressures[J]. Journal of Chongqing University,2010,33(3):82−86.
[136] 韦纯福,李化敏,袁瑞甫. 煤与瓦斯突出过程中的瓦斯压力效应[J]. 煤田地质与勘探,2014,42(6):24−28.
WEI Chunfu,LI Huamin,YUAN Ruifu. Gas pressure effect in the process of coal and gas outburst[J]. Coal Geology & Exploration,2014,42(6):24−28.
[137] 虎维岳,李静,王寿全. 瓦斯在煤基多孔介质中运移及煤与瓦斯突出机理[J]. 煤田地质与勘探,2009,37(4):6−8.
HU Weiyue,LI Jing,WANG Shouquan. The flowing and outburst mechanism of gas in coal–based pore and fractured medium[J]. Coal Geology & Exploration,2009,37(4):6−8.
[138] 谢焰,王勇,胡水根. 含瓦斯煤体一维渗透失稳模拟试验[J]. 煤田地质与勘探,2015,43(4):27−30.
XIE Yan,WANG Yong,HU Shuigen. One–dimensional simulation tests on permeation in stability of coal containing gas[J]. Coal Geology & Exploration,2015,43(4):27−30.
[139] 唐一博,袁亮,薛俊华,等. 基于物理模拟的煤与瓦斯突出主控因素及能量演化过程[J]. 煤矿安全,2017,48(11):1−4.
TANG Yibo,YUAN Liang,XUE Junhua,et al. Control factors of coal and gas outburst and energy evolution based on physical simulation[J]. Safety in Coal Mines,2017,48(11):1−4.
[140] 欧建春,王恩元,马国强,等. 煤与瓦斯突出过程煤体破裂演化规律[J]. 煤炭学报,2012,37(6):978−983.
OU Jianchun,WANG Enyuan,MA Guoqiang,et al. Coal rupture evolution law of coal and gas outburst process[J]. Journal of China Coal Society,2012,37(6):978−983.
[141] 许江,杨孝波,周斌,等. 突出过程中煤层瓦斯压力与温度演化规律研究[J]. 中国矿业大学学报,2019,48(6):1177−1187.
XU Jiang,YANG Xiaobo,ZHOU Bin,et al. Study of evolution law of gas pressure and temperature in coal seam during outburst[J]. Journal of China University of Mining & Technology,2019,48(6):1177−1187.
[142] 周斌,许江,彭守建,等. 受载突出煤体的力学状态演变及破坏倾向性[J]. 煤炭学报,2022,47(3):1260−1274.
ZHOU Bin,XU Jiang,PENG Shoujian,et al. Evolution of mechanical state and failure tendency of loaded outburst coal[J]. Journal of China Coal Society,2022,47(3):1260−1274.
[143] 王恩元,何学秋,刘贞堂,等. 煤岩动力灾害电磁辐射监测仪及其应用[J]. 煤炭学报,2003,28(4):366−369.
WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Electromagnetic radiation detector of coal or rock dynamic disasters and its application[J]. Journal of China Coal Society,2003,28(4):366−369.
[144] 唐巨鹏,郝娜,潘一山,等. 基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J]. 岩石力学与工程学报,2021,40(1):31−42.
TANG Jupeng,HAO Na,PAN Yishan,et al. Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):31−42.
[145] 唐巨鹏,任凌冉,潘一山,等. 深部煤与瓦斯突出孕育全过程声发射前兆信号变化规律研究[J]. 实验力学,2021,36(6):827−837.
TANG Jupeng,REN Lingran,PAN Yishan,et al. Study on the variation rule of acoustic emission precursor signal of deep coal and gas outburst process[J]. Journal of Experimental Mechanics,2021,36(6):827−837.
[146] 雷文杰,李泽军. 突出模拟前兆微震响应的双谱分布特征[J]. 煤炭学报,2017,42(5):1193−1200.
LEI Wenjie,LI Zejun. Bispectrum and distribution characteristics of microseismic responses from outburst simulation test precursory events[J]. Journal of China Coal Society,2017,42(5):1193−1200.
[147] 胡千庭, 文光才. 煤与瓦斯突出的力学作用机理[M]. 北京: 科学出版社, 2013.
[148] 郑哲敏. 从数量级和量纲分析看煤与瓦斯突出的机理: 郑哲敏文集[M]. 北京: 科学出版社, 2004: 382–392.
[149] 蒋承林,俞启香. 煤与瓦斯突出过程中能量耗散规律的研究[J]. 煤炭学报,1996,21(2):173−178.
JIANG Chenglin,YU Qixiang. Rules of energy dissipation in coal and gas outburst[J]. Journal of China Coal Society,1996,21(2):173−178.
[150] 谢雄刚,冯涛,王永,等. 煤与瓦斯突出过程中能量动态平衡[J]. 煤炭学报,2010,35(7):1120−1124.
XIE Xionggang,FENG Tao,WANG Yong,et al. The energy dynamic balance in coal and gas outburst[J]. Journal of China Coal Society,2010,35(7
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons