Coal Geology & Exploration


Water hazards in coal mines are a major type of hidden danger in safe coal mining. The accurate detection of hidden factors to cause hazard is the prerequisite to solving the water hazards. Electromagnetic methods, which are sensitive to low-resistivity bodies and have multiple types and high adaptability, can be used to effectively detect water-rich hazard-causing factors. Traditional ground electromagnetic methods, including the controlled source audio-frequency magnetotellurics (CSAMT) method and the loop source transient electromagnetic method, play an important role in detecting hidden hazard-causing factors in coal mines. With the continuous development of new technologies, near-source electromagnetic methods have developed rapidly. These methods include the wide-field electromagnetic method (WFEM) and the short-offset transient electromagnetic method (SOTEM) and contribute to the increase in the exploration efficiency and signal-to-noise ratio and the expansion of the observation areas. The grounded clectrical source air-born transient electromagnetic method GREATEM is a new method with high power and rapid exploration. This method enjoys the advantage of fast acquisition of airborne electromagnetic methods and the advantage of high-power emission of ground electromagnetic methods and is especially suitable for detecting hidden hazard-causing factors in coal mines with complex terrain conditions. This study analyzed the formation mechanisms, temporal and spatial distribution, and physical characteristics of the typical hazard-causing factors in coal mines. Among these factors, concealed water-conducting structures are a major type, and therefore, much attention should be paid to them. Moreover, this study reviewed the primary characteristics and applicability of various electromagnetic methods, as well as the current status of their applications in the detection of water hazards in coal mines. Moreover, it summarized the technical parameters and observation modes of various electromagnetic methods, thus providing relevant technicians with a reference for the detection of hidden factors inducing hazards in coal mines. Finally, this study offered the developmental prospects of electromagnetic methods for coal mines, including (1) Near-source electromagnetic exploration methods such as the WFEM and the SOTEM will be further applied in coal exploration; (2) The three-dimensional inversion technology and deep learning-based neural network algorithms will be the major developmental directions of electromagnetic methods in the future; (3) The grounded clectrical source airborne transient electromagnetic method will undergo rapid development and tends to substitute traditional electromagnetic methods.


artificial source electromagnetic method, coal mine, hidden hazard-causing factor, exploration, review




[1] 薛国强,潘冬明,于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展,2018,33(5):2187−2192.

XUE Guoqiang,PAN Dongming,YU Jingcun. Review the applications of geophysical methods for mapping coal–mine voids[J]. Progress in Geophysics,2018,33(5):2187−2192.

[2] 屈花荣,沈永坤. 综合物勘方法在煤矿隐蔽致灾地质因素探查中的应用研究[J]. 煤炭与化工,2022,45(1):87−91.

QU Huarong,SHEN Yongkun. Application research of comprehensive physical exploration method in exploration of geological factors hiddenly causing damage in coal mine[J]. Coal and Chemical Industry,2022,45(1):87−91.

[3] 汤井田,何继善. 可控源音频大地电磁法及其应用[M]. 长沙:中南大学出版社,2005.

[4] 何继善. 可控源音频大地电磁法[M]. 长沙:中南大学出版社,1990.

[5] AN Z G,DI Q Y. Application of the CSAMT method for exploring deep coal mines in Fujian Province,Southeastern China[J]. Journal of Environmental and Engineering Geophysics,2010,15(4):243−249.

[6] 何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版),2010,41(3):1065−1072.

HE Jishan. Wide field electromagnetic sounding methods[J]. Journal of Central South University (Science and Technology),2010,41(3):1065−1072.

[7] 何继善. 广域电磁法和伪随机信号电法[M]. 北京:高等教育出版社,2010.

[8] 李帝铨,肖教育,张继锋,等. WFEM与CSAMT 在新元煤矿富水区探测效果对比[J]. 物探与化探,2021,45(5):1359−1366.

LI Diquan,XIAO Jiaoyu,ZHANG Jifeng,et al. Comparison of application effects of WFEM and CSAMT in water–rich area of Xinyuan Coal Mine[J]. Geophysical and Geochemical Exploration,2021,45(5):1359−1366.

[9] 崔焕玉,郭培鹏,黎东升,等. 地空频率域电磁系统在小煤窑勘查中的应用[J]. 河北工程大学学报(自然科学版),2022,39(3):93−98.

CUI Huanyu,GUO Peipeng,LI Dongsheng,et al. Application of ground airborne frequency domain electromagnetic system in detection of small coal mine[J]. Journal of Hebei University of Engineering (Natural Science Edition),2022,39(3):93−98.

[10] 李貅. 瞬变电磁测深的理论与应用[M]. 西安:陕西科学技术出版社,2002.

[11] 薛国强,陈卫营,周楠楠,等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报,2013,56(1):255−261.

XUE Guoqiang,CHEN Weiying,ZHOU Nannan,et al. Short–offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics,2013,56(1):255−261.

[12] 嵇艳鞠,王远,徐江,等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报,2013,56(11):3640−3650.

JI Yanju,WANG Yuan,XU Jiang,et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics,2013,56(11):3640−3650.

[13] 李貅,张莹莹,卢绪山,等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报,2015,58(1):277−288.

LI Xiu,ZHANG Yingying,LU Xushan,et al. Inverse synthetic aperture imaging of ground–airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics,2015,58(1):277−288.

[14] 张莹莹,李貅,姚伟华,等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报,2015,58(8):2745−2758.

ZHANG Yingying,LI Xiu,YAO Weihua,et al. Multi–component full field apparent resistivity definition of multi–source ground–airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics,2015,58(8):2745−2758.

[15] 田忠斌,马玉龙,李貅,等. 煤层采空区内煤层气储气构造半航空瞬变电磁探测:以沁水煤田为例[J]. 地球物理学报,2022,65(11):4495−4503.

TIAN Zhongbin,MA Yulong,LI Xiu,et al. A method for detecting coalbed methane gas storage structure in coal goaf:A case in Qinshui Coal Field in Shanxi Province[J]. Chinese Journal of Geophysics,2022,65(11):4495−4503.

[16] 薛国强,于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展,2017,32(1):319−326.

XUE Guoqiang,YU Jingcun. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics,2017,32(1):319−326.

[17] 张晓峰. 瞬变电磁法探测煤田采空区的应用研究[D]. 西安:长安大学,2007.

ZHANG Xiaofeng. The applied research of TEM in detecting coalfield goaf[D]. Xi’an:Chang’an University,2007.

[18] 王超凡,赵永贵,靳洪晓,等. 地震CT及其在采空区探测中的应用[J]. 地球物理学报,1998,41(增刊1):367−375.

WANG Chaofan,ZHAO Yonggui,JIN Hongxiao,et al. Seismic tomography and its application to the investigation of buried worked–out area[J]. Chinese Journal of Geophysics,1998,41(Sup.1):367−375.

[19] 孟召平,师修昌,刘珊珊,等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报,2016,41(3):537−544.

MENG Zhaoping,SHI Xiuchang,LIU Shanshan,et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society,2016,41(3):537−544.

[20] 罗斌. 积水采空区围岩(煤)导水通道形成机理研究[D]. 徐州:中国矿业大学,2021.

LUO Bin. Research on the mechanism of water–conducted fractures in rock and coal near the goafs[D]. Xuzhou:China University of Mining and Technology,2021.

[21] 杨飞. 山西省老空突水的水文地质结构模式与致灾机制[D]. 徐州:中国矿业大学,2019.

YANG Fei. Goaf–water inrush models of hydrogeologic structure and its disaster–mechanism in Shanxi Province[D]. Xuzhou:China University of Mining and Technology,2019.

[22] 曹鹤. 白羊岭煤矿岩溶陷落柱发育规律及成因探讨[D]. 徐州:中国矿业大学,2017.

CAO He. An approach to the genesis and elopement pattern of karst collapse column in Baiyangling Coal Mine[D]. Xuzhou:China University of Mining and Technology,2017.

[23] 赵永清. 北徐楼煤矿陷落柱充水、导水性分析及防治[D]. 青岛:山东科技大学,2006.

ZHAO Yongqing. Analysis and prevention and curve of admission and diversion of water in Beixulou Coal Mine[D]. Qingdao:Shandong University of Science and Technology,2006.

[24] 贺志宏. 双柳煤矿陷落柱发育特征及突水机理研究[D]. 北京:中国矿业大学(北京),2012.

HE Zhihong. Study on development characteristic of karst collapse column and water inrush mechanism in Shuangliu Mine[D]. Beijing:China University of Mining and Technology (Beijing),2012.

[25] 原文涛. 瞬变电磁法在采空区及陷落柱探测中的应用[J]. 物探与化探,2012,36(增刊1):164−167.

YUAN Wentao. The application of transient electromagnetic method to the detection of goaf and collapse columns[J]. Geophysical & Geochemical Exploration,2012,36(Sup.1):164−167.

[26] 殷长春,朴化荣. 电磁测深法视电阻率定义问题的研究[J]. 物探与化探,1991,15(4):290−299.

YIN Changchun,PIAO Huarong. A study of the definition of apparent resistivity in electromagnetic sounding[J]. Geophysical & Geochemical Exploration,1991,15(4):290−299.

[27] 汤井田,周聪,张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报(地球科学版),2011,41(2):552−558.

TANG Jingtian,ZHOU Cong,ZHANG Lincheng. A new apparent resistivity of CSAMT defined by electric field y–direction[J]. Journal of Jilin University (Earth Science Edition),2011,41(2):552−558.

[28] 冯兵,王珺璐,周祥文,等. CSAMT探测中电场 Ex全区视电阻率定义及应用[J]. 煤田地质与勘探,2013,41(6):78−82.

FENG Bing,WANG Junlu,ZHOU Xiangwen,et al. Application of full–region apparent resistivity of CSAMT Ex in exploration[J]. Coal Geology & Exploration,2013,41(6):78−82.

[29] 胡瑞华,林君,孙彩堂,等. 均匀大地 CSAMT 静态效应模拟及其特征研究[J]. 物探与化探,2015,39(6):1150−1155.

HU Ruihua,LIN Jun,SUN Caitang,et al. Simulation of CSAMT static effect and research on its characteristics in homogeneous earth[J]. Geophysical and Geochemical Exploration,2015,39(6):1150−1155.

[30] 于生宝,郑建波,高明亮,等. 基于小波变换模极大值法和阈值法的CSAMT静态校正[J]. 地球物理学报,2017,60(1):360−368.

YU Shengbao,ZHENG Jianbo,GAO Mingliang,et al. CSAMT static correction method based on wavelet transform modulus maxima and thresholds[J]. Chinese Journal of Geophysics,2017,60(1):360−368.

[31] 苏超,郭恒,侯彦威,等. CSAMT静态校正及其在煤矿采空区探测的应用[J]. 煤田地质与勘探,2018,46(4):168−173.

SU Chao,GUO Heng,HOU Yanwei,et al. CSAMT static correction and its application in detection of coal mine goaf[J]. Coal Geology & Exploration,2018,46(4):168−173.

[32] 苏超,侯彦威,王程,等. CSAMT相位校正及其在煤矿采空积水区探测中的应用[J]. 煤田地质与勘探,2019,47(6):180−186.

SU Chao,HOU Yanwei,WANG Cheng,et al. CSAMT phase correction and its application in detection of water–accumulating area of goaf in coal mine[J]. Coal Geology & Exploration,2019,47(6):180−186.

[33] 刘最亮,张奋轩,张继锋,等. 基于CSAMT电场分量的电性标志层深度校正技术及应用[J]. 煤田地质与勘探,2021,49(4):24−32.

LIU Zuiliang,ZHANG Fenxuan,ZHANG Jifeng,et al. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. Coal Geology & Exploration,2021,49(4):24−32.

[34] 闫述,薛国强,邱卫忠,等. CSAMT单分量数据解释方法[J]. 地球物理学报,2017,60(1):349−359.

YAN Shu,XUE Guoqiang,QIU Weizhong,et al. Interpretation of CSAMT single–component data[J]. Chinese Journal of Geophysics,2017,60(1):349−359.

[35] 崔江伟,周楠楠,薛国强,等. CSAMT电场单分量视电阻率定义在地热资源勘探中的应用[J]. 东华理工大学学报(自然科学版),2015,38(4):438−442.

CUI Jiangwei,ZHOU Nannan,XUE Guoqiang,et al. Single component apparent resistivity of CSAMT defined by electric field in the application of the geothermal resource exploration[J]. Journal of East China Institute of Technology (Natural Science),2015,38(4):438−442.

[36] 邱卫忠,闫述,薛国强,等. CSAMT的各分量在山地精细勘探中的作用[J]. 地球物理学进展,2011,26(2):664−668.

QIU Weizhong,YAN Shu,XUE Guoqiang,et al. Action of CSAMT field components in mountainous fine prospecting[J]. Progress in Geophysics,2011,26(2):664−668.

[37] 汤井田,任政勇,周聪,等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报,2015,58(8):2681−2705.

TANG Jingtian,REN Zhengyong,ZHOU Cong,et al. Frequency–domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics,2015,58(8):2681−2705.

[38] 李帝铨,谢维,程党性. EEx广域电磁法三维数值模拟[J]. 中国有色金属学报,2013,23(9):2459−2470.

LI Diquan,XIE Wei,CHENG Dangxing. Three–dimensional modeling for EEx wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals,2013,23(9):2459−2470.

[39] 胡涂,李帝铨. EEx广域电磁法对低阻薄层分辨能力探讨[J]. 物探化探计算技术,2014,36(3):297−303.

HU Tu,LI Diquan. Distinguish ability on thin resistant layered structure of EEx mode of wide field electromagnetic sounding method[J]. Computing Technique for Geophysical and Geochemical Exploration,2014,36(3):297−303.

[40] 张继锋,周光裕,刘最亮,等. EEx广域电磁法横向约束反演[J]. 煤炭学报,2022,47(7):2698−2707.

ZHANG Jifeng,ZHOU Guangyu,LIU Zuiliang,et al. Lateral constrained inversion of EEx wide field data[J]. Journal of China Coal Society,2022,47(7):2698−2707.

[41] 陈卫营,薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探,2015,39(2):358−361.

CHEN Weiying,XUE Guoqiang. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geochemical Exploration,2015,39(2):358−361.

[42] 王顺国,熊彬,王有学,等. 广域电磁法HHz方式波数域的一次场特征[J]. 桂林理工大学学报,2012,32(2):179−183.

WANG Shunguo,XIONG Bin,WANG Youxue,et al. Wave–number domain features of primary field of HHz arrangement wide field electromagnetic method[J]. Journal of Guilin University of Technology,2012,32(2):179−183.

[43] 伏海涛,罗维斌,丁志军,等. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探,2019,43(6):1309−1319.

FU Haitao,LUO Weibin,DING Zhijun,et al. The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source[J]. Geophysical and Geochemical Exploration,2019,43(6):1309−1319.

[44] 李帝铨,胡艳芳. 强干扰矿区中广域电磁法与 CSAMT探测效果对比[J]. 物探与化探,2015,39(5):967−972.

LI Diquan,HU Yanfang. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration,2015,39(5):967−972.

[45] ZHOU Haigen,YAO Yao,LIU Changsheng,et al. Feasibility of signal enhancement with multiple grounded–wire sources for a frequency–domain electromagnetic survey[J]. Geophysical Prospecting,2018,66(4):818−832.

[46] LIN Jun,KANG Lili,LIU Changsheng,et al. The frequency–domain airborne electromagnetic method with a grounded electrical source[J]. Geophysics,2019,84(4):E269−E280.

[47] ZHOU Haigen,LIN Jun,LIU Changsheng,et al. Interaction between two adjacent grounded sources in frequency domain semi–airborne electromagnetic survey[J]. The Review of Scientific Instruments,2016,87(3):034503.

[48] 张铭,Colin G. Farquharson,刘长胜. 2.5维起伏地表条件下频率域地空电磁正演模拟[J]. 地球物理学报,2021,64(1):327−342.

ZHANG Ming,FARQUHARSON C G,LIU Changsheng. 2.5–D forward modeling of the frequency–domain ground–airborne electromagnetic response in areas with topographic relief[J]. Chinese Journal of Geophysics,2021,64(1):327−342.

[49] 张继锋,刘寄仁,冯兵,等. 多源频率域地空系统三维电磁响应分析[J]. 地球物理学报,2021,64(4):1419−1434.

ZHANG Jifeng,LIU Jiren,FENG Bing,et al. Three–dimensional response of the 3D grounded multiple–source airborne EM system in the frequency domain[J]. Chinese Journal of Geophysics,2021,64(4):1419−1434.

[50] 刘长胜,朱文杰,马金发,等. 地空频率域电磁法探测范围与深度分析[J]. 中国矿业大学学报,2020,49(5):1006−1012.

LIU Changsheng,ZHU Wenjie,MA Jinfa,et al. Analysis of detection range and depth of ground–airborne frequency domain electromagnetic method[J]. Journal of China University of Mining & Technology,2020,49(5):1006−1012.

[51] 冯兵,孟小红,张斌. TEM框内回线装置发射框边界影响及消除方法[J]. 煤田地质与勘探,2010,38(5):61−66.

FENG Bing,MENG Xiaohong,ZHANG Bin. Transmitting coil boundary effect for TEM large loop source and elimination method[J]. Coal Geology & Exploration,2010,38(5):61−66.

[52] 冯兵,孟小红,张斌. 磁源瞬变电磁法中心回线装置全程视电阻率定义及计算[J]. 物探与化探,2010,34(5):686−690.

FENG Bing,MENG Xiaohong,ZHANG Bin. Definition and calculation of all–time apparent resistivity for central loop device of magnetic source TEM[J]. Geophysical and Geochemical Exploration,2010,34(5):686−690.

[53] 戚志鹏,李貅,朱宏伟,等. 大定源装置下瞬变电磁法视电阻率定义[J]. 地球物理学进展,2011,26(4):1350−1358.

QI Zhipeng,LI Xiu,ZHU Hongwei,et al. Definition of apparent resistivity for non–center vertical component of large–loop TEM configuration[J]. Progress in Geophysics,2011,26(4):1350−1358.

[54] 戚志鹏,智庆全,李貅,等. 大定源瞬变电磁三分量全域视电阻率定义与三分量联合反演[J]. 物探与化探,2014,38(4):742−749.

QI Zhipeng,ZHI Qingquan,LI Xiu,et al. The definition of the full–zone apparent resistivity and the constrained inversion of the three components of fixed source TEM[J]. Geophysical and Geochemical Exploration,2014,38(4):742−749.

[55] 陈明生,石显新. 对瞬变电磁测深几个问题的思考(四):从不同角度看瞬变电磁场法的探测深度[J]. 煤田地质与勘探,2017,45(5):140−146.

CHEN Mingsheng,SHI Xianxin. Detecting depth of transient electromagnetic method from different points of view[J]. Coal Geology & Exploration,2017,45(5):140−146.

[56] 闫述,石显新,陈明生. 瞬变电磁法的探测深度问题[J]. 地球物理学报,2009,52(6):1583−1591.

YAN Shu,SHI Xianxin,CHEN Mingsheng. The probing depth of transient electromagnetic field method[J]. Chinese Journal of Geophysics,2009,52(6):1583−1591.

[57] 薛国强. 论瞬变电磁测深法的探测深度[J]. 石油地球物理勘探,2004,39(5):575−578.

XUE Guoqiang. On surveying depth by transient electromagnetic sounding method[J]. Oil Geophysical Prospecting,2004,39(5):575−578.

[58] 刘最亮,王鹤宇,冯兵,等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报,2019,44(8):2346−2355.

LIU Zuiliang,WANG Heyu,FENG Bing,et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society,2019,44(8):2346−2355.

[59] 邢涛,袁伟,李建慧. 回线源瞬变电磁法的一维 Occam反演[J]. 物探与化探,2021,45(5):1320−1328.

XING Tao,YUAN Wei,LI Jianhui. One–dimensional Occam’s inversion for transient electromagnetic data excited by a loop source[J]. Geophysical and Geochemical Exploration,2021,45(5):1320−1328.

[60] 李哲,杨海燕,岳建华,等. 覆盖层影响下圆锥型瞬变电磁Occam约束反演[J]. 煤田地质与勘探,2022,50(6):175−183.

LI Zhe,YANG Haiyan,YUE Jianhua,et al. Conical source transient electromagnetic response characteristics with overburden based on Occam constrained inversion[J]. Coal Geology & Exploration,2022,50(6):175−183.

[61] 姚伟华. 大回线源瞬变电磁一维自适应反演方法及应用[J]. 物探与化探,2019,43(3):584−588.

YAO Weihua. The one–dimensional adaptive inversion method for large loop source TEM and its application[J]. Geophysical and Geochemical Exploration,2019,43(3):584−588.

[62] 韩自强,袁宏亮,贺世明,等. 基于拟大地电磁二维反演技术的磁源瞬变电磁实测资料处理[J]. 地球物理学进展,2016,31(2):517−524.

HAN Ziqiang,YUAN Hongliang,HE Shiming,et al. Magnetic source transient electromagnetic measured data processing based on the simulating magnetotelluric 2D inversion technique[J]. Progress in Geophysics,2016,31(2):517−524.

[63] 杨云见,王绪本,刘雪军,等. 横向约束瞬变电磁拟三维反演[J]. 石油地球物理勘探,2021,56(1):201−208.

YANG Yunjian,WANG Xuben,LIU Xuejun,et al. A quasi–3D TEM inversion based on lateral constrains[J]. Oil Geophysical Prospecting,2021,56(1):201−208.

[64] 杨海燕,刘志新,张华,等. 圆锥型场源瞬变电磁法试验研究[J]. 煤田地质与勘探,2021,49(6):107−112.

YANG Haiyan,LIU Zhixin,ZHANG Hua,et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration,2021,49(6):107−112.

[65] 陈明生,石显新,解海军. 对瞬变电磁测深几个问题的思考(二):小回线瞬变场法探测分析与实践[J]. 煤田地质与勘探,2017,45(3):125−130.

CHEN Mingsheng,SHI Xianxin,XIE Haijun. Analysis and practice of detection of small loop transient field[J]. Coal Geology & Exploration,2017,45(3):125−130.

[66] YAN Shu,CHEN Mingsheng,SHI Xianxin. Transient electromagnetic sounding using a 5m square loop[J]. Exploration Geophysics,2009,40(2):193−196.

[67] 席振铢,龙霞,周胜,等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报,2016,59(9):3428−3435.

XI Zhenzhu,LONG Xia,ZHOU Sheng,et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics,2016,59(9):3428−3435.

[68] 刘黎东,张富翔,张继锋,等. 基于等值反磁通的隧道TEM超前探测三维模拟及应用[J]. 地球物理学进展,2021,36(6):2730−2737.

LIU Lidong,ZHANG Fuxiang,ZHANG Jifeng,et al. Simulation and application of tunnel TEM advanced detection based on opposing−coils configuration[J]. Progress in Geophysics,2021,36(6):2730−2737.

[69] 薛国强,陈卫营,武欣,等. 电性源短偏移距瞬变电磁研究进展[J]. 中国矿业大学学报,2020,49(2):215−226.

XUE Guoqiang,CHEN Weiying,WU Xin,et al. Review on research of short−offset transient electromagnetic method[J]. Journal of China University of Mining & Technology,2020,49(2):215−226.

[70] XUE Guoqiang. The development of near–source electromagnetic methods in China[J]. Journal of Environmental and Engineering Geophysics,2018,23(1):115−124.

[71] 何继善,薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报,2018,61(1):1−8.

HE Jishan,XUE Guoqiang. Review of the key techniques on short−offset electromagnetic detection[J]. Chinese Journal of Geophysics,2018,61(1):1−8.

[72] 薛国强,闫述,陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展,2014,29(1):177−181.

XUE Guoqiang,YAN Shu,CHEN Weiying. Research prospect to grounded–wire TEM with short–offset[J]. Progress in Geophysics,2014,29(1):177−181.

[73] 薛国强,闫述,陈卫营,等. SOTEM深部探测关键问题分析[J]. 地球物理学进展,2015,30(1):121−125.

XUE Guoqiang,YAN Shu,CHEN Weiying,et al. The key problems of SOTEM used in deep detection[J]. Progress in Geophysics,2015,30(1):121−125.

[74] 商天新,张继锋,冯兵,等. 任意形状水平电性源瞬变电磁全区视电阻率计算[J]. 地球科学与环境学报,2020,42(6):749−758.

SHANG Tianxin,ZHANG Jifeng,FENG Bing,et al. Calculation of all–time apparent resistivity for arbitrary horizontal electrical source transient electromagnetic method[J]. Journal of Earth Sciences and Environment,2020,42(6):749−758.

[75] 闫国翔,尹秉喜,杨勇. 电性源瞬变电磁全区视电阻率定义[J]. 物探与化探,2017,41(5):933−938.

YAN Guoxiang,YIN Bingxi,YANG Yong. All–time apparent resistivity definition for electrical source transient electromagnetic method[J]. Geophysical and Geochemical Exploration,2017,41(5):933−938.

[76] 陈卫营,李海,薛国强,等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报,2017,60(9):3667−3676.

CHEN Weiying,LI Hai,XUE Guoqiang,et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics,2017,60(9):3667−3676.

[77] 陈卫营,薛国强,崔江伟,等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报,2016,59(2):739−748.

CHEN Weiying,XUE Guoqiang,CUI Jiangwei,et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics,2016,59(2):739−748.

[78] 陈卫营,薛国强. SOTEM一维等效源反演方法[J]. 物探与化探,2016,40(2):411−416.

CHEN Weiying,XUE Guoqiang. 1–D image source inversion of SOTEM data[J]. Geophysical and Geochemical Exploration,2016,40(2):411−416.

[79] 宋婉婷,陈卫营. SOTEM数据拟二维反演研究与应用[J]. 地球科学与环境学报,2022,44(1):132−142.

SONG Wanting,CHEN Weiying. Study on quasi–2D inversion for SOTEM data and its application[J]. Journal of Earth Sciences and Environment,2022,44(1):132−142.

[80] 齐彦福,李貅,孙乃泉,等. 电性源短偏移距瞬变电磁地形影响特征分析[J]. 吉林大学学报(地球科学版),2022,52(1):247−260.

QI Yanfu,LI Xiu,SUN Naiquan,et al. Analysis of influence characteristics of topography on grounded–source short–offset transient electromagnetic responses[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):247−260.

[81] 陈大磊,陈卫营,郭朋,等. SOTEM法在城镇强干扰环境下的应用:以坊子煤矿采空区为例[J]. 物探与化探,2020,44(5):1226−1232.

CHEN Dalei,CHEN Weiying,GUO Peng,et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration,2020,44(5):1226−1232.

[82] 卢云飞,薛国强,邱卫忠,等. SOTEM 研究及其在煤田采空区中的应用[J]. 物探与化探,2017,41(2):354−359.

LU Yunfei,XUE Guoqiang,QIU Weizhong,et al. The research on SOTEM and its application in mined–out area of coal mine[J]. Geophysical and Geochemical Exploration,2017,41(2):354−359.

[83] XUE Guoqiang,LI Xiu,YU Shengbao,et al. The application of ground–airborne TEM systems for underground cavity detection in China[J]. Journal of Environmental and Engineering Geophysics,2018,23(1):103−113.

[84] WU Xin,XUE Guoqiang,FANG Guangyou,et al. The development and applications of the semi–airborne electromagnetic system in China[J]. IEEE Access,2019,7:104956−104966.

[85] 张莹莹,李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展,2017,32(4):1735−1741.

ZHANG Yingying,LI Xiu. Research progress on ground–airborne transient electromagnetic method[J]. Progress in Geophysics,2017,32(4):1735−1741.

[86] 马振军,底青云,薛国强,等. 地–空瞬变电磁法电阻率成像研究与应用[J]. 地球物理学报,2021,64(3):1090−1105.

MA Zhenjun,DI Qingyun,XUE Guoqiang,et al. The research and application of resistivity imaging of semi–airborne transient electromagnetic method[J]. Chinese Journal of Geophysics,2021,64(3):1090−1105.

[87] CHEN Chengdong,SUN Huaifeng. Characteristic analysis and optimal survey area definition for semi–airborne transient electromagnetics[J]. Journal of Applied Geophysics,2020,180:104134.

[88] MA Zhenjun,DI Qingyun,LEI Da,et al. The optimal survey area of the semi–airborne TEM method[J]. Journal of Applied Geophysics,2020,172:103884.

[89] 李肃义,林君,阳贵红,等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报,2013,56(9):3145−3152.

LI Suyi,LIN Jun,YANG Guihong,et al. Ground–airborne electromagnetic signals de–noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics,2013,56(9):3145−3152.

[90] JI Yanju,LI Dongsheng,YU Mingmei,et al. A de–noising algorithm based on wavelet threshold–exponential adaptive window width–fitting for ground electrical source airborne transient electromagnetic signal[J]. Journal of Applied Geophysics,2016,128:1−7.

[91] WANG Yuan,JI Yanju,LI Suyi,et al. A wavelet–based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals[J]. Exploration Geophysics,2013,44(4):229−237.

[92] LI Dongsheng,WANG Yuan,LIN Jun,et al. Electromagnetic noise reduction in grounded electrical−source airborne transient electromagnetic signal using a stationary−wavelet−based denoising algorithm[J]. Near Surface Geophysics,2017,15(2):163−173.

[93] 曹凤凤. 地空瞬变电磁起伏地形效应的特征研究[D]. 西安:长安大学,2019.

CAO Fengfeng. Study on characteristics of rugged terrain effect of ground-airborne transient electromagnetic[D]. Xi’an:Chang’an Unviversity,2019.

[94] 赵涵,景旭,李貅,等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探,2019,43(1):132−142.

ZHAO Han,JING Xu,LI Xiu,et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration,2019,43(1):132−142.

[95] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探,2022,46(2):424−432.

ZHANG Yingying. A constrained and adaptive regularized 1D inversion method of multi-source semi-airborne transient electromagnetics[J]. Geophysical and Geochemical Exploration,2022,46(2):424−432.

[96] 嵇艳鞠,徐江,吴琼,等. 基于神经网络电性源半航空视电阻率反演研究[J]. 电波科学学报,2014,29(5):973−980.

JI Yanju,XU Jiang,WU Qiong,et al. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neural network[J]. Chinese Journal of radio Science,2014,29(5):973−980.

[97] 刘明宏,蔡红柱,杨浩,等. 地面与半航空瞬变电磁法三维联合[J]. 地球物理学报,2022,65(10):3997−4011.

LIU Minghong,CAI Hongzhu,YANG Hao,et al. Three-dimensional joint inversion of ground and semi-airborne transient electromagnetic method[J]. Chinese Journal of Geophysics,2022,65(10):3997−4011.

[98] 张庆辉,田忠斌,林君,等. 时域电性源地空电磁系统在煤炭采空积水区勘查中的应用[J]. 煤炭学报,2019,44(8):2509−2515.

ZHANG Qinghui,TIAN Zhongbin,LIN Jun,et al. Application of time domain electrical source ground airborne electromagnetic system in goaf water exploration[J]. Journal of China Coal Society,2019,44(8):2509−2515.

[99] 王振荣,程久龙,宋立兵,等. 地空时间域电磁系统在陕西神木地区煤矿采空区勘查中的应用[J]. 地球科学与环境学报,2020,42(6):776−783.

WANG Zhenrong,CHENG Jiulong,SONG Libing,et al. Application of ground–airborne time domain electromagnetic system in goaf exploration of coal mine in Shenmu area of Shaanxi,China[J]. Journal of Earth Sciences and Environment,2020,42(6):776−783.

[100] 侯彦威,高小伟,李雄伟,等. 地空瞬变电磁在积水采空区探测中的应用[J]. 煤炭工程,2021,53(10):61−66.

HOU Yanwei,GAO Xiaowei,LI Xiongwei,et al. Application of ground–airborne transient electromagnetic method in the detection of water–filled goaf[J]. Coal Engineering,2021,53(10):61−66.

[101] 林君,薛国强,李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报,2021,64(9):2995−3004.

LIN Jun,XUE Guoqiang,LI Xiu. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics,2021,64(9):2995−3004.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.