•  
  •  
 

Coal Geology & Exploration

Abstract

Traditional 3D seismic exploration in coal mining areas is difficult to meet the requirements of transparent and accurate geological exploration for safe and efficient coal mining due to its low precision for complex structures, lower coal seams, and limestones. In this case, high-density 3D seismic exploration technology for coal fields emerged. This technology has undergone three developmental stages in China, namely the exploration and test stage during 2005‒2007, the test and demonstration stage during 2008‒2014, and the promotion and application stage since 2015. After nearly 20 years of development, its accuracy for the exploration of complex geological structures has been significantly improved, and great progress has been made in its ability to solve special geological problems. By combining the analysis of relevant study results and exploration examples, this study reviewed the current status of techniques used in major links, such as data acquisition, processing, and interpretation, in the high-density 3D seismic exploration technology for coal mines. Facing the urgent need of safe and efficient production of coal mines for small and micro-structure interpretation and accurate lithology identification, this study proposed that the development of high-density 3D seismic exploration technology for coal fields will focus on the technologies for the optimization of the seismic observation system, the merging of seismic data, pre-stack depth migration, data processing and interpretation of the Offset Vector Title (OVT) domain, depth-domain seismic data interpretation, and artificial intelligence processing and interpretations.

Keywords

coal field, high-density 3D seismic exploration, OVT technology, depth-domain interpretation, development status, trend

DOI

10.12363/issn.1001-1986.23.03.0116

Reference

[1] 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊,2023,38(1):11−22.

YUAN Liang. Theory and technology considerations on high−quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11−22.

[2] 彭苏萍,赵惊涛,盛同杰,等. 煤田绕射地震勘探现状与进展[J]. 煤田地质与勘探,2023,51(1):1−20.

PENG Suping,ZHAO Jingtao,SHENG Tongjie,et al. Status and advance of seismic diffraction exploration in coalfield[J]. Coal Geology & Exploration,2023,51(1):1−20.

[3] 金学良,王琦. 煤矿采区高密度三维地震勘探模式与效果[J]. 煤田地质与勘探,2020,48(6):1−7.

JIN Xueliang,WANG Qi. Pattern and effect of the high density 3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):1−7.

[4] 倪建明,董守华,王琦,等. 中国东部煤田高密度三维地震勘探技术及应用[M]. 徐州:中国矿业大学出版社,2021.

[5] 煤矿采区三维地震勘探规范:T/CGS 012—2022[S]. 北京:中国标准出版社,2022.

[6] ONGKIEHONG L,ASKIN H J. Towards the universal seismic acquisition technique[J]. First Break,1988,6(2):46−63.

[7] PECHOLCS P. Universal land acquisition 14 years later[J]. SEG Technical Program Expanded Abstracts,1999,21(1):2478.

[8] 刘振武,撒利明,董世泰,等. 中国石油高密度地震技术的实践与未来[J]. 石油勘探与开发,2009,36(2):129−135.

LIU Zhenwu,SA Liming,DONG Shitai,et al. Practices and expectation of high–density seismic exploration technology in CNPC[J]. Petroleum Exploration and Development,2009,36(2):129−135.

[9] 尚新民,芮拥军,石林光,等. 胜利油田高密度地震探索与实践[J]. 地球物理学进展,2018,33(4):1545−1553.

SHANG Xinmin,RUI Yongjun,SHI Linguang,et al. Exploration and practice of high–density seismic survey in Shengli Oilfield[J]. Progress in Geophysics,2018,33(4):1545−1553.

[10] 胡高伟,邓勇,潘光超,等. 双方位、高密度地震资料在文昌凹陷勘探中的应用[J]. 地球物理学进展,2019,34(6):2444−2450.

HU Gaowei,DENG Yong,PAN Guangchao,et al. Application of two–azimuth and high–density 3D seismic data in the exploration of Wenchang depression[J]. Progress in Geophysics,2019,34(6):2444−2450.

[11] 刘欣欣,吴国忱,梁锴. 单点高密度地震勘探技术研究综述[J]. 地球物理学进展,2009,24(4):1354−1366.

LIU Xinxin,WU Guochen,LIANG Kai. The review of point–source/point–receiver high density seismic exploration technology[J]. Progress in Geophysics,2009,24(4):1354−1366.

[12] 蔡希源,韩文功,于静,等. 罗家地区高密度三维地震勘探实例[J]. 石油地球物理勘探,2011,46(2):182−186.

CAI Xiyuan,HAN Wengong,YU Jing,et al. A high density 3D seismic acquisition case in Luojia Area[J]. Oil Geophysical Prospecting,2011,46(2):182−186.

[13] 王华忠. “两宽一高”油气地震勘探中的关键问题分析[J]. 石油物探,2019,58(3):313−324.

WANG Huazhong. Key problem analysis in seismic exploration based on wide−azimuth,high−density,and broadband seismic data[J]. Geophysical Prospecting for Petroleum,2019,58(3):313−324.

[14] 王海,赵会欣,晋志刚. 观测系统对高密度地震采集资料的影响[J]. 石油地球物理勘探,2009,44(2):131−135.

WANG Hai,ZHAO Huixin,JIN Zhigang. Influence of geometry on high–density seismic data acquisition[J]. Oil Geophysical Prospecting,2009,44(2):131−135.

[15] 张军华,张瑞芳,王静,等. 高密度资料面元细分与速度分析关系研究[J]. 地球物理学进展,2009,24(6):2079−2086.

ZHANG Junhua,ZHANG Ruifang,WANG Jing,et al. Research on bin–divisible processing and velocity analysis of high–density seismic data[J]. Progress in Geophysics,2009,24(6):2079−2086.

[16] 韩文功,于静,刘学伟. 高密度三维地震技术[M]. 北京:地质出版社,2017.

[17] 王延光,尚新民,芮拥军. 单点高密度地震技术进展、实践与展望[J]. 石油物探,2022,61(4):571−590.

WANG Yanguang,SHANG Xinmin,RUI Yongjun. Progress,practice and prospect of single–sensor high–density seismic technology[J]. Geophysical Prospecting for Petroleum,2022,61(4):571−590.

[18] 郭旭升,刘金连,杨江峰,等. 中国石化地球物理勘探实践与展望[J]. 石油物探,2022,61(1):1−14.

GUO Xusheng,LIU Jinlian,YANG Jiangfeng,et al. Geophysical exploration practices and perspectives at Sinopec[J]. Geophysical Prospecting for Petroleum,2022,61(1):1−14.

[19] 金丹. 煤炭全数字高密度三维地震勘探关键技术研究[D]. 北京:煤炭科学研究总院,2015.

JIN Dan. Research on key technology of the digital high–density 3D seismic exploration in coal mine[D]. Beijing:China Coal Research Institute,2015.

[20] 程彦,赵镨,汪洋,等. 煤矿采区全数字高密度三维地震勘探技术体系建立与发展研究[J]. 中国煤炭地质,2022,34(6):66−72.

CHENG Yan,ZHAO Pu,WANG Yang,et al. Study on coalmine winning district full−digital and high−density 3D seismic prospecting technical system establishment and development[J]. Coal Geology of China,2022,34(6):66−72.

[21] 赵镨,武喜尊. 高密度采集技术在西部煤炭资源勘探中的应用[J]. 中国煤炭地质,2008,20(6):11−14.

ZHAO Pu,WU Xizun. High density acquisition technology and its application in Western China coal resource exploration[J]. Coal Geology of China,2008,20(6):11−14.

[22] 程建远,张宪旭,蒋必辞,等. 从1D 到4D:煤田地震勘探的技术进步及启示[J]. 煤田地质与勘探,2023,51(1):247−258.

CHENG Jianyuan,ZHANG Xianxu,JIANG Bici,et al. From 1D to 4D:Advances and thoughts on coal seismic technology[J]. Coal Geology & Exploration,2023,51(1):247−258.

[23] 赵镨. 高分辨地震勘探技术是探测煤矿地质异常体的有效手段:《全国煤矿采区地震经验交流暨成果发布会》技术成果实例[J]. 中国煤田地质,1999,11(增刊1):86−90.

ZHAO Pu. High–resolution seismic exploration technology is an effective means to detect geological anomalies in coal mines:An example of technical achievements of the National Coal Mining Area Seismic Experience Exchange and Results Conference[J]. Coal Geology of China,1999,11(Sup.1):86−90.

[24] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332−2336.

ZHAO Liming,CUI Ruofei. Application of digital high–density seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332−2336.

[25] 杨光明,金学良,张宪旭,等. 宽频宽方位处理技术在淮北矿区全数字高密度地震勘探中的应用[J]. 煤田地质与勘探,2020,48(6):55−63.

YANG Guangming,JIN Xueliang,ZHANG Xianxu,et al. Application of broadband and wide azimuth processing technology in full digital high density seismic exploration in Huaibei Mining Area[J]. Coal Geology & Exploration,2020,48(6):55−63.

[26] 于杰. 叠前去噪技术在煤矿采区全数字高密度三维地震中的应用[J]. 煤田地质与勘探,2020,48(6):48−54.

YU Jie. Application of pre–stack denoising technique in full digital high density 3D seismic technique in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):48−54.

[27] 张利兵,董守华. 煤矿采区地震勘探不同检波器接收试验与分析[J]. 煤田地质与勘探,2020,48(6):33−39.

ZHANG Libing,DONG Shouhua. Reception test and analysis of different geophones in coal mining districts seismic exploration[J]. Coal Geology & Exploration,2020,48(6):33−39.

[28] 孙文涛,方正. 我国煤田物探技术的回顾与展望[J]. 地球物理学报,1997,40(增刊1):362−368.

SUN Wentao,FANG Zheng. Review and prospect of coal geophysical technology in China[J]. Chinese Journal of Geophysics,1997,40(Sup.1):362−368.

[29] 刘俊杰,王彦春. 煤田数字高密度地震勘探的应用效果探析[J]. 中国煤炭,2013,39(1):37−39.

LIU Junjie,WANG Yanchun. On application effectiveness of digital high–density seismic prospecting in coalfield[J]. China Coal,2013,39(1):37−39.

[30] 方良才,赵伟,徐羽中,等. 淮南煤田三维地震勘探技术应用进展[J]. 中国煤炭地质,2010,22(8):73−82.

FANG Liangcai,ZHAO Wei,XU Yuzhong,et al. Progression of 3D seismic prospecting technology application in Huainan Mining Area[J]. Coal Geology of China,2010,22(8):73−82.

[31] 衡雪丽,姚精选. 高密度三维地震勘探在晋城煤业集团赵庄矿的应用[J]. 煤矿现代化,2011(4):39−41.

HENG Xueli,YAO Jingxuan. Application of high–density 3D seismic exploration in Zhaozhuang Mine of Jincheng Coal Industry Group[J]. Coal Mine Modernization,2011(4):39−41.

[32] 张建军,徐礼贵,黄元溢,等. 一次高密度全方位煤矿三维地震采集探索[C]//2015年物探技术研讨会论文集. 中国石油学会,2015.

[33] 王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J]. 煤田地质与勘探,2018,46(增刊1):41−45.

WANG Qi. Application of all digital high density 3D seismic exploration technology in Huaibei Mining Area[J]. Coal Geology & Exploration,2018,46(Sup.1):41−45.

[34] 吴永辉,虞永征,吴访. 煤矿三维地震小断层精细解释方法与技术[J]. 工程地球物理学报,2020,17(2):177−183.

WU Yonghui,YU Yongzheng,WU Fang. Fine interpretation method and technology of 3D seismic small faults in coal mines[J]. Chinese Journal of Engineering Geophysics,2020,17(2):177−183.

[35] 刘二鹏. 高密度地震采集技术研究:以长治某煤矿采区为例[D]. 太原:太原理工大学,2011.

LIU Erpeng. High–density seismic acquisition technology:Case study of a coal mining area in Changzhi[D]. Taiyuan:Taiyuan University of Technology,2011.

[36] 王超越. 煤田高密度三维地震勘探观测系统面元属性评价与优选[D]. 徐州:中国矿业大学,2021.

WANG Chaoyue. Evaluation and optimization of bin attributes for coalfield high–density 3D seismic exploration acquisition geometry[D]. Xuzhou:China University of Mining and Technology,2021.

[37] 刘俊杰,丹. 穆基诺. 高密度地震勘探的激发和接收技术探讨[J]. 中国煤炭地质,2010,22(8):25−28.

LIU Junjie,MOUGENOT D. A discussion on high density seismic prospecting shot and receiving technologies[J]. Coal Geology of China,2010,22(8):25−28.

[38] 王超越,董守华. 高密度三维地震观测系统炮检距均匀性评价[J]. 地球物理学进展,2020,35(6):2220−2227.

WANG Chaoyue,DONG Shouhua. Evaluation of high–density 3D seismic layout offset distance uniformity[J]. Progress in Geophysics,2020,35(6):2220−2227.

[39] 程建远,王千遥,朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探,2020,48(6):25−32.

CHENG Jianyuan,WANG Qianyao,ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):25−32.

[40] 金丹,程建远,张宪旭. 高密度全数字地震勘探技术在煤田中的应用及效果分析[J]. 煤炭技术,2015,34(8):89−92.

JIN Dan,CHENG Jianyuan,ZHANG Xianxu. Application and effect analysis of single–point high–density digital seismic exploration in coal seismic exploration[J]. Coal Technology,2015,34(8):89−92.

[41] 徐晓培. 高密度三维地震在超浅层煤田勘探中的应用[J]. 中国煤炭地质,2018,30(12):96−101.

XU Xiaopei. Application of high density seismic prospecting in ultra–shallow coalfield exploration[J]. Coal Geology of China,2018,30(12):96−101.

[42] 刘俊,赵伟,韩必武. 淮南矿区高精度三维地震勘探技术应用[J]. 煤田地质与勘探,2020,48(6):8−14.

LIU Jun,ZHAO Wei,HAN Biwu. Application of high–precision 3D seismic exploration technology in Huainan Mining Area[J]. Coal Geology & Exploration,2020,48(6):8−14.

[43] 李文花. 宽方位地震资料OVT处理技术在煤田地震勘探中的研究与应用[J]. 工程地球物理学报,2020,17(3):300−307.

LI Wenhua. Research and application of wide azimuth seismic data OVT processing technology to coal seismic exploration[J]. Chinese Journal of Engineering Geophysics,2020,17(3):300−307.

[44] 李文花. OVT 域5D 数据规则化处理方法在榆林某矿中的研究与应用[J]. 中国煤炭地质,2020,32(5):53−57.

LI Wenhua. Research and application of OVT domain 5D data regularization processing in a Yulin Mine[J]. Coal Geology of China,2020,32(5):53−57.

[45] 田忠斌,李娟,申有义,等. OVT域处理技术在沁水盆地深部煤层气勘探中的应用[J]. 煤田地质与勘探,2020,48(6):93−102.

TIAN Zhongbin,LI Juan,SHEN Youyi,et al. The application of OVT domain processing technology in deep CBM exploration in Qinshui Basin[J]. Coal Geology & Exploration,2020,48(6):93−102.

[46] 蔡文芮. OVT域五维规则化在煤田高密度数据处理中的应用[J]. 煤炭技术,2021,40(12):86−90.

CAI Wenrui. Application of five–dimensional regularization in OVT domain in high–density data processing of coal fields[J]. Coal Technology,2021,40(12):86−90.

[47] 蔡文芮. OVT域叠前时间偏移在煤田高密度三维地震勘探中的应用[J]. 能源与环保,2021,43(10):142−148.

CAI Wenrui. Application of OVT prestack migration in high density 3D seismic of mine field[J]. China Energy and Environmental Protection,2021,43(10):142−148.

[48] 倪新辉,刘天放. 地震勘探技术预测奥灰岩溶裂隙发育带[J]. 中国煤田地质,1997,9(4):59−61.

NI Xinhui,LIU Tianfang. Prediction of Ordovician limestone karst fissure development zone by seismic exploration technology[J]. Coal Geology of China,1997,9(4):59−61.

[49] 郝东青. 观音堂煤矿奥灰含水层突水危险性预测评价与综合防治技术研究[D]. 徐州:中国矿业大学,2019.

HAO Dongqing. Prediction and evaluation of water inrush risk in Ordovician limestone aquifer of Guanyintang coal mine and comprehensive prevention and control technology research[D]. Xuzhou:China University of Mining and Technology,2019.

[50] 孟凡彬. 煤矿采区高密度三维地震深度域资料解释方法[J]. 煤田地质与勘探,2020,48(6):80−86.

MENG Fanbin. Interpretation method of high density 3D seismic depth domain data in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):80−86.

[51] 吴斌. 煤田小断层叠后地震方位分析及其应用[D]. 徐州:中国矿业大学,2021.

WU Bin. Analysis and application of seismic azimuth after stacking of small faults in coalfield[D]. Xuzhou:China University of Mining and Technology,2021.

[52] 曾爱平,张嘉玮,任恩明,等. 基于VMD 和SVM 的煤厚预测方法研究[J]. 煤田地质与勘探,2021,49(6):243−250.

ZENG Aiping,ZHANG Jiawei,REN Enming,et al. Research on the coal thickness prediction method based on VMD and SVM[J]. Coal Geology & Exploration,2021,49(6):243−250.

[53] 程彦,赵镨,林建东,等. 地震波形分类技术在地质异常体解释中的应用[J]. 煤田地质与勘探,2020,48(6):87−92.

CHENG Yan,ZHAO Pu,LIN Jiandong,et al. Application of seismic waveform classification technology in interpretation of geological abnormal body[J]. Coal Geology & Exploration,2020,48(6):87−92.

[54] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.