Coal Geology & Exploration


Air leakage in the goaf of coal mine is an important cause of coal fire disaster. The traditional filling and plugging materials are easy to crack, with poor fluidity and high cost. Therefore, it is necessary to develop new materials for effective filling and plugging of the air leakage channels. Herein, the new filling and plugging material of inorganic curing foam with large-volume fly ash was developed by optimizing the mix ratio based on material fluidity, initial setting time and compressive strength using the single factor variable method. Meanwhile, the material hydration process was characterized by the infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the water based foam with sodium dodecyl sulfate (SDS)∶decyl glucoside (APG) of 1∶1 and xanthan gum (XG)∶guar gum (GG) of 1∶1 is selected based on the foam uniformity, foaming multiple, half-life and water separation rate. The initial setting time of the inorganic curing foam with large-volume fly ash is proportional to the amount of fly ash, water cement ratio and foam content. The fluidity is proportional to the water cement ratio water and iversely propotional to the amount of tlyash content based on the fluidity decreases with the increasing of fly ash content, and increases first and then decreases slowly with the increasing of foam content. The compressive strength of inorganic curing foam with large-volume fly ash increases first and then decreases with the increasing of fly ash content, but it is inversely proportional to the water cement ratio and foam content. According to the comprehensive evaluation indexes, the material fluidity is good at 15.9 cm, the initial setting time is moderate at 5 h, and the compressive strength is great, reaching 1.5 MPa at 28 d when the fly ash content was 60%, the water-ash ratio is 0.6, and the volume ratio of foam to composite slurry is 1:1. The hydration products of the material include ettringite (AFT) and C-S-H gel. The hydration reaction of cement first generates Ca(OH)2, and then the Ca(OH)2 reacts with fly ash to generate AFT and C-S-H gel, thereby improving the compressive strength of inorganic curing foam with high-volume fly ash, which is capable of satisfying the requirements leakage blocking in goaf.


high-volume fly ash, inorganic curing foam, compressive strength, hydration reaction, leakage blocking in goaf




[1] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1−7.

DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1−7.

[2] 李峰,刘鸿福,张新军,等. 基于分形理论确定地下煤层自燃火区范围[J]. 煤田地质与勘探,2013,41(3):15−17.

LI Feng,LIU Hongfu,ZHANG Xinjun,et al. Determination of spontaneous combustion extent in coal seams on the basis of the fractal theory[J]. Coal Geology & Exploration,2013,41(3):15−17.

[3] 褚廷湘,余明高,杨胜强,等. 煤岩裂隙发育诱导采空区漏风及自燃防治研究[J]. 采矿与安全工程学报,2010,27(1):87−93.

CHU Tingxiang,YU Minggao,YANG Shengqiang,et al. Air leaking induced by well developed coal fractures and prevention of spontaneous combustion in goaf[J]. Journal of Mining & Safety Engineering,2010,27(1):87−93.

[4] 王东江,杨胜强,刘松,等. 采空区漏风对煤自燃危险性的影响[J]. 煤矿安全,2011,42(5):129−132.

WANG Dongjiang,YANG Shengqiang,LIU Song,et al. Influence of air leakage in goaf on risk of coal spontaneous combustion[J]. Safety in Coal Mines,2011,42(5):129−132.

[5] 宋博,王大鹏,李雨成,等. 基于不同漏风源浅埋煤层采空区自燃“三带”分布规律研究[J]. 中国安全生产科学技术,2022,18(6):38−44.

SONG Bo,WANG Dapeng,LI Yucheng,et al. Study on distribution law of spontaneous combustion “three zones” in goaf of shallow−buried coal seam based on different air leakage sources[J]. Journal of Safety Science and Technology,2022,18(6):38−44.

[6] 尹征龙,张起,徐志辉,等. 聚合物水泥砂浆的研究进展与发展趋势[J]. 混凝土与水泥制品,2022(8):31−36.

YIN Zhenglong,ZHANG Qi,XU Zhihui,et al. Research progress and trends of polymer cement mortar[J]. China Concrete and Cement Products,2022(8):31−36.

[7] 左希希,王斌,朱喜颖,等. 高分子凝胶三相泡沫发泡剂的优化及研究[J]. 消防科学与技术,2021,40(5):741−743.

ZUO Xixi,WANG Bin,ZHU Xiying,et al. Optimization and study of three–phase foam foaming agent for polymer gel[J]. Fire Science and Technology,2021,40(5):741−743.

[8] QIN Botao,LU Yi,LI Fanglei,et al. Preparation and stability of inorganic solidified foam for preventing coal fires[J]. Advances in Materials Science and Engineering,2014,2014:347386.

[9] 王涛,鲁义,施式亮,等. 漏风裂隙内无机固化泡沫浆液扩散特性研究[J]. 中国安全科学学报,2019,29(10):24−30.

WANG Tao,LU Li,SHI Shiliang,et al. Research on diffusion properties of inorganic solidified foam slurry in air leakage fracture[J]. China Safety Science Journal,2019,29(10):24−30.

[10] 雷瑞,付东升,李国法,等. 粉煤灰综合利用研究进展[J]. 洁净煤技术,2013,19(3):106−109.

LEI Rui,FU Dongsheng,LI Guofa,et al. Research progress of fly ash comprehensive utilization[J]. Clean Coal Technology,2013,19(3):106−109.

[11] 茅沈栋,李镇,方莹. 粉煤灰资源化利用的研究现状[J]. 混凝土,2011(7):82−84.

MAO Shendong,LI Zhen,FANG Ying. Current status of research on the utilization of fly ash[J]. Concrete,2011(7):82−84.

[12] 孙道胜,胡梅梅,王爱国,等. 大掺量粉煤灰高水充填材料的研制[J]. 硅酸盐通报,2016,35(4):1074−1079.

SUN Daosheng,HU Meimei,WANG Aiguo,et al. Research and preparation of high water filling material with high dosage of fly ash[J]. Bulletin of the Chinese Ceramic Society,2016,35(4):1074−1079.

[13] 罗小博,宋彧,郭启明,等. 粉煤灰掺量对混凝土力学性能影响的试验研究[J]. 混凝土,2021(8):88−90.

LUO Xiaobo,SONG Yu,GUO Qiming,et al. Experimental study of influence of the mechanical behavior about fly ash content on concrete[J]. Concrete,2021(8):88−90.

[14] 易欣,康付如,邓军,等. 矿用无机固化泡沫充填材料研究及应用[J]. 中国安全生产科学技术,2017,13(10):136−142.

YI Xin,KANG Furu,DENG Jun,et al. Research and application on inorganic solidified foam filling material for mine[J]. Journal of Safety Science and Technology,2017,13(10):136−142.

[15] JONES M R. High–volume,ultra–low–density fly ash foamed concrete[J]. Magazine of Concrete Research,2017,69(22):1146−1156.

[16] YUAN Kekuo,GONG Yu,FU Shaojun,et al. Development of quick–solidifying foamed concrete for mine fires extinguishment and the basic performances tests[J]. Frontiers in Materials,2020,7:587998.

[17] LU Yi,QIN Botao. Experimental investigation of closed porosity of inorganic solidified foam designed to prevent coal fires[J]. Advances in Materials Science and Engineering,2015,2015:724548.

[18] 轩宇宁,倪晓芳,余锦涛. 常见二元表面活性剂复配体系对发泡能力的影响[J]. 华东理工大学学报(自然科学版),2022,48(4):449−455.

XUAN Yuning,NI Xiaofang,YU Jintao. Influence of common surfactant binary composite system on foamability[J]. Journal of East China University of Science and Technology (Natural Science Edition),2022,48(4):449−455.

[19] 张群,裴梅山,张瑾,等. 十二烷基硫酸钠与两性表面活性剂复配体系表面性能及影响因素[J]. 日用化学工业,2006,36(2):69−72.

ZHANG Qun,PEI Meishan,ZHANG Jin,et al. Study of performance and its influencing factors of blends of sodium dodecyl sulfate and zwitterionic surfactants[J]. China Surfactant Detergent & Cosmetics,2006,36(2):69−72.

[20] 李凯斌,刘彦峰,周春生,等. 不同稳泡剂对发泡水泥性能的影响[J]. 当代化工,2017,46(4):591−594.

LI Kaibin,LIU Yanfeng,ZHOU Chunsheng,et al. Effect of different foam stabilizers on the properties of foamed cement[J]. Contemporary Chemical Industry,2017,46(4):591−594.

[21] 高鹤,王丽洁. 阴离子表面活性剂及其与稳泡剂协同作用对泡沫混凝土性能的影响[J]. 新型建筑材料,2020,47(2):137−140.

GAO He,WANG Lijie. Effects of anionic surfactant and its synergistic effect with foam stabilizer on foam concrete[J]. New Building Materials,2020,47(2):137−140.

[22] 张文华,杨冯皓,吕毓静,等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报,2021,49(10):2266−2275.

ZHANG Wenhua,YANG Fenghao,LYU Yujing,et al. Research progress on foam stabilization method and mechanism of foamed concrete[J]. Journal of the Chinese Ceramic Society,2021,49(10):2266−2275.

[23] 李林香,谢永江,冯仲伟,等. 水泥水化机理及其研究方法[J]. 混凝土,2011(6):76−80.

LI Linxiang,XIE Yongjiang,FENG Zhongwei,et al. Cement hydration mechanism and research methods[J]. Concrete,2011(6):76−80.

[24] 幸超群,邓怡帆,笪俊伟,等. 硅灰–粉煤灰复合矿物掺合料对混凝土性能的影响研究[J]. 新型建筑材料,2022,49(9):52−56.

XING Chaoqun,DENG Yifan,DA Junwei,et al. Research on the influence of silica fume–fly ash composite mineral admixture on concrete performance[J]. New Building Materials,2022,49(9):52−56.

[25] 刘浩,戚文,张群,等. 不同温度条件下矿渣水泥的水化反应机理研究[J]. 新型建筑材料,2022,49(9):154−157.

LIU Hao,QI Wen,ZHANG Qun,et al. Study on hydration mechanism of slag cement at different temperatures[J]. New Building Materials,2022,49(9):154−157.

[26] 赵文华,崔锋,刘鹏亮,等. 粉煤灰–脱硫石膏充填材料性能及微观结构研究[J]. 中国矿业,2022,31(9):132−138.

ZHAO Wenhua,CUI Feng,LIU Pengliang,et al. Study on properties and microstructure of fly ash–flue gas desulphurization gypsum filling material[J]. China Mining Magazine,2022,31(9):132−138.

[27] 张涛,朱成. 水泥–硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报,2022,41(3):903−912.

ZHANG Tao,ZHU Cheng. Strength,shrinkage performance and microstructure of cement–silica fume/fly ash system[J]. Bulletin of The Chinese Ceramic Society,2022,41(3):903−912.

[28] 马越,周新涛,黄静,等. 矿物掺合料对磷酸镁水泥性能影响及机理研究现状[J]. 过程工程学报,2021,21(6):629−638.

MA Yue,ZHOU Xintao,HUANG Jing,et al. Research status of mineral admixtures on properties and mechanism of magnesium phosphate cement[J]. The Chinese Journal of Process Engineering,2021,21(6):629−638.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.