•  
  •  
 

Coal Geology & Exploration

Authors

SUN Qiang, College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, ChinaFollow
ZHANG Weiqiang, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
GENG Jishi, College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, ChinaFollow
HU Jianjun, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China
ZHANG Yuliang, School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
LYU Chao, College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
GE Zhenlong, College of Architecture and Geomatics Engineering, Shanxi Datong University, Datong 037003, China
LI Pengfei, College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
JIA Hailiang, College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
LIU Yabin, Department of Geological Engineering, Qinghai University, Xining 810016, China
LI Yuxiang, College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Coal resource is still in the main position of China’s energy structure, but the development of coal industry is facing the new challenge of “carbon peaking and carbon neutrality”. Actively developing coal underground space energy storage technology is an effective means to promote low-carbon and clean energy utilization, and also a key measure to ensure China’s energy strategic security. This study discussed the potential utilization of underground space formed by coal mining based on the current energy storage technologies. Focusing on new energy storage technologies such as underground pumped storage hydropower plants in coal mines (UPSHCM), thermal energy storage (TES), compressed air energy storage (CAES), electrochemical energy storage (EES), coal underground space biomass energy storage (CUBES), and other storage based on underground space of coal mining, the concept and mode of energy storage for different types of energy in abandoned mines are mainly elaborated, and the key technical problems of geological guarantee faced in the process of energy storage are systematically analyzed. The general idea of the technology of energy storage in underground space formed by coal mining is: using the underground space formed by coal mining with low potential energy difference as a cascade reservoir (UPSHCM), or as a media and energy storage space (TES, CAES, EES, CUBES, etc.), which can not only improve the utilization rate of underground space formed by coal mining, avoid the waste of land resources, but also minimize the disturbance to the ecological environment. Although the underground space formed by coal mining can be used as a large-scale energy storage reservoir, there are still some geological problems and geological guarantee techniques to be solved urgently in its development and utilization process. The followings are mainly included: (1) Analysis and safety evaluation of geological conditions and siting suitability. Specifically, this study should be conducted on the geological factors of energy storage space in terms of geotechnical engineering properties and environmental geological conditions, to identify the main control factors of energy storage space stability and their weights, as well as establish the site selection index system and evaluation methods. Thereby, the regional structure, strength of surrounding rock and development of holes and fissures can be found out to ensure the safety of the site. (2) Construction of energy storage geological body and research on key technologies. That is, the multi-scale performance evolution model of the geological body under the coupling conditions of thermal (T), hydrological (H), mechanical (M) and chemistry (C) of the energy storage geological body should be constructed according to the actual conditions of underground space and relevant parameters. The isolation wall construction of underground space, the establishment of energy storage space system, the evaluation of energy storage potential, and the innovation in surrounding rock reinforcement and improvement, seepage prevention and other safety measures of underground space should be conducted in combination with numerical analysis and simulation technology. In addition, geological guarantee should be provided for the long-term safe and efficient development of underground space energy storage. (3) Research on the performance evolution of energy storage geological body. Definitely, the thermal damage characteristics of surrounding rock at multiple scales (microscopic, mesoscopic and macroscopic) and the deterioration mechanism of surrounding rock fatigue strength should be revealed based on the coupling model of multi-phase (solid and liquid) and multi-field (temperature, stress, seepage and chemical fields), so as to obtain the key parameters, including the physical parameters of energy storage medium, injection volume, injection-production frequency, energy storage time and energy storage pressure, etc. Besides, a reasonable surrounding rock reinforcement process and stability control technology should be developed, and the long-term settlement law of overburden rock should be analyzed, thus providing basis for the leakage prevention project of the reservoir. (4) Assessment of long-term safety and stability of underground space. The long-term and multi-scale health monitoring and dynamic evaluation of geological conditions, safety conditions and environmental conditions of underground space formed by coal mining should be carried out, a safety early warning system for the geological environment of storage should be built, and the operation process and geological environment evolution should be analyzed to provide all-round safety monitoring and early warning for energy storage in underground space formed by coal mining. This study could provide an idea for the utilization of underground space resource formed by coal mining in China, and promote the transformation and development of China’s coal industry to be green, clean and efficient under the “dual carbon” goal.

Keywords

underground space formed by coal mining, carbon neutrality, energy storage, multi-phase and multi-field coupling, geological guarantee

DOI

10.12363/issn.1001-1986.22.10.0799

Reference

[1] 王双明,申艳军,孙强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.

WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the“dual carbon”target[J]. Journal of China Coal Society,2022,47(1):45−60.

[2] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.

XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.

[3] HU Jianjun,XIE Heping,SUN Qiang,et al. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action[J]. International Journal of Mining Science and Technology,2021,31(5):843−852.

[4] SUN Qiang,HU Jianjun. The effect of rapid cooling on the thermal diffusivity of granite[J]. Journal of Applied Geophysics,2019,168:71−78.

[5] 谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972.

XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped–storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.

[6] 孙文洁,任顺利,武强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2022,47(6):2161−2169.

SUN Wenjie,REN Shunli,WU Qiang,et al. Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J]. Journal of China Coal Society,2022,47(6):2161−2169.

[7] 孙亚军,徐智敏,李鑫,等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.

SUN Yajun,XU Zhimin,LI Xin,et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.

[8] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.

YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.

[9] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960.

XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960.

[10] 袁亮,杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24.

YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24.

[11] 袁亮,张通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131−2139.

YUAN Liang,ZHANG Tong,ZHANG Qinghe,et al. Construction of green,low–carbon and multi–energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131−2139.

[12] 林铭山. 抽水蓄能发展与技术应用综述[J]. 水电与抽水蓄能,2018,4(1):1−4.

LIN Mingshan. Survey on development and technology application of pumped storage[J]. Hydropower and Pumped Storage,2018,4(1):1−4.

[13] 张新敬,陈海生,刘金超,等. 压缩空气储能技术研究进展[J]. 储能科学与技术,2012,1(1):26−40.

ZHANG Xinjing,CHEN Haisheng,LIU Jinchao,et al. Research progress in compressed air energy storage system:A review[J]. Energy Storage Science and Technology,2012,1(1):26−40.

[14] 纪律,陈海生,张新敬,等. 压缩空气储能技术研发现状及应用前景[J]. 高科技与产业化,2018(4):52−58.

JI Lyu,CHEN Haisheng,ZHANG Xinjing,et al. Research and development status quo and application prospect of compressed air energy storage technology[J]. High–Technology & Commercialization,2018(4):52−58.

[15] ZHANG Xinrong,WANG Guanbang. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research,2017,41(10):1487−1503.

[16] 郝佳豪,越云凯,张家俊,等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术,2022,11(10):3285−3296.

HAO Jiahao,YUE Yunkai,ZHANG Jiajun,et al. Research status and development prospect of carbon dioxide energy−storage technology[J]. Energy Storage Science and Technology,2022,11(10):3285−3296.

[17] 张新宾,储江伟,李洪亮,等. 飞轮储能系统关键技术及其研究现状[J]. 储能科学与技术,2015,4(1):55−60.

ZHANG Xinbin,CHU Jiangwei,LI Hongliang,et al. Key technologies of flywheel energy storage systems and current development status[J]. Energy Storage Science and Technology,2015,4(1):55−60.

[18] 刘文军,贾东强,曾昊旻,等. 飞轮储能系统的发展与工程应用现状[J]. 微特电机,2021,49(12):52−58.

LIU Wenjun,JIA Dongqiang,ZENG Haomin,et al. Development and engineering application status of flywheel energy storage system[J]. Small & Special Electrical Machines,2021,49(12):52−58.

[19] 夏焱,万继方,李景翠,等. 重力储能技术研究进展[J]. 新能源进展,2022,10(3):258−264.

XIA Yan,WAN Jifang,LI Jingcui,et al. Research progress of gravity energy storage technology[J]. Advances in New and Renewable Energy,2022,10(3):258−264.

[20] 陈云良,刘旻,凡家异,等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术,2022,54(1):97−105.

CHEN Yunliang,LIU Min,FAN Jiayi,et al. Present situation,technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences,2022,54(1):97−105.

[21] 汪琦,俞红啸,张慧芬. 太阳能光热发电中熔盐蓄热储能循环系统的设计开发[J]. 化工装备技术,2014,35(1):11−14.

WANG Qi,YU Hongxiao,ZHANG Huifen. Design and development of the thermal and energy storage circulating system with molten salts for solar thermal power generation[J]. Chemical Equipment Technology,2014,35(1):11−14.

[22] 韩兴超,章学来,华维三,等. 建筑用太阳能光热相变储能瓦片设计[J]. 可再生能源,2018,36(3):359−364.

HAN Xingchao,ZHANG Xuelai,HUA Weisan,et al. Design of solar–thermal PCM heat storage tiles for building[J]. Renewable Energy Resources,2018,36(3):359−364.

[23] 刘同同. 太阳能光热发电的储能材料的原理及研究进展[J]. 中国高新科技,2019(41):34−36.

LIU Tongtong. Solar thermal power generation of energy storage materials principle and research progress[J]. China High and New Technology,2019(41):34−36.

[24] YU Qiang,LU Yuanwei,ZHANG Xiaopan,et al. Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,230:111215.

[25] 王含,郑新,张金龙. 储能式地热能综合能源系统效益分析[J]. 建筑节能,2019,47(3):60−64.

WANG Han,ZHENG Xin,ZHANG Jinlong. Benefit analysis of integrated energy systems using geothermal energy−stored in buildings[J]. Building Energy Efficiency,2019,47(3):60−64.

[26] 郑新,孙雨潇,张迪,等. 潮汐式地热能储能供热调峰系统效益分析[J]. 储能科学与技术,2020,9(3):720−724.

ZHENG Xin,SUN Yuxiao,ZHANG Di,et al. Benefit study of peak shaving energy systems using geothermal energy with storage in office buildings[J]. Energy Storage Science and Technology,2020,9(3):720−724.

[27] 张叶龙,宋鹏飞,周伟,等. 基于复合相变储热材料的电热储能系统[J]. 储能科学与技术,2017,6(6):1250−1256.

ZHANG Yelong,SONG Pengfei,ZHOU Wei,et al. Electrical heating systems with heat storage using composite phase change materials[J]. Energy Storage Science and Technology,2017,6(6):1250−1256.

[28] 廖晋. 固体电蓄热装置的传热特性研究[D]. 哈尔滨:哈尔滨工业大学,2014.

LIAO Jin. Research on heat transfer characteristics of solid electric heat storage device[D]. Harbin:Harbin Institute of Technology,2014.

[29] 郑开云. 基于超临界二氧化碳循环的电热储能系统[J]. 分布式能源,2020,5(5):43−47.

ZHENG Kaiyun. Electrothermal energy storage system based on supercritical carbon dioxide cycle[J]. Distributed Energy,2020,5(5):43−47.

[30] 付英,曾令可,王慧,等. 相变储能材料在工业余热回收领域的应用研究进展[J]. 工业炉,2009,31(5):11−14.

FU Ying,ZENG Lingke,WANG Hui,et al. Research and application progress of phase change energy storage materials in industry waste heat recovery[J]. Industrial Furnace,2009,31(5):11−14.

[31] 赵杰,唐炳涛,张淑芬,等. 相变储能材料在工业余热回收中的应用[J]. 化工进展,2009,28(增刊1):63−65.

ZHAO Jie,TANG Bingtao,ZHANG Shufen,et al. Application of phase change energy storage materials in industrial waste heat recovery[J]. Chemical Industry and Engineering Progress,2009,28(Sup.1):63−65.

[32] 朱芳啟. 低品位热源利用的再吸附储能循环特性研究[D]. 上海:上海交通大学,2017.

ZHU Fangqi. Properties investigation on resorption energy stor age cycle driven by low–grade heat source[D]. Shanghai:Shanghai Jiaotong University,2017.

[33] 张步涵,王云玲,曾杰. 超级电容器储能技术及其应用[J]. 水电能源科学,2006,24(5):50−52.

ZHANG Buhan,WANG Yunling,ZENG Jie. Super capacitor energy storage and its application[J]. Water Resources and Power,2006,24(5):50−52.

[34] 杨天慧,李文鑫,信赢. 新型超导能量转换/存储装置原理及应用展望[J]. 西南交通大学学报,2022,40(9):1000−1005.

YANG Tianhui,LI Wenxin,XIN Ying. Principle and application prospective of a novel superconducting energy conversion/storage device[J]. Journal of Southwest Jiaotong University,2022,40(9):1000−1005.

[35] 蒋凯,李浩秒,李威,等. 几类面向电网的储能电池介绍[J]. 电力系统自动化,2013,37(1):47−53.

JIANG Kai,LI Haomiao,LI Wei,et al. On several battery technologies for power grids[J]. Automation of Electric Power Systems,2013,37(1):47−53.

[36] 李先锋,张洪章,郑琼,等. 能源革命中的电化学储能技术[J]. 中国科学院院刊,2019,34(4):443−449.

LI Xianfeng,ZHANG Hongzhang,ZHENG Qiong,et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences,2019,34(4):443−449.

[37] 王熙庭. 德国开展二氧化碳加氢制合成天然气项目[J]. 天然气化工,2014,39(2):50.

WANG Xiting. Germany conducts carbon dioxide hydrogenation to synthetic natural gas project[J]. Natural Gas Chemical Industry,2014,39(2):50.

[38] 俞红梅,衣宝廉. 电解制氢与氢储能[J]. 中国工程科学,2018,20(3):58−65.

YU Hongmei,YI Baolian. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic Study of CAE,2018,20(3):58−65.

[39] 吴娟,龙新峰. 热化学储能的研究现状与发展前景[J]. 现代化工,2014,34(9):17−21.

WU Juan,LONG Xinfeng. Research status and prospects for thermochemical energy storage[J]. Modern Chemical Industry,2014,34(9):17−21.

[40] 王长君,闫君,董勇,等. 相变储能技术在热泵系统中的应用综述[J]. 综合智慧能源,2022,44(4):51−64.

WANG Changjun,YAN Jun,DONG Yong,et al. Application of phase−change energy storage technology in heat pump systems[J]. Integrated Intelligent Energy,2022,44(4):51−64.

[41] 陈海生,李泓,马文涛,等. 2021年中国储能技术研究进展[J]. 储能科学与技术,2022,11(3):1052−1076.

CHEN Haisheng,LI Hong,MA Wentao,et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology,2022,11(3):1052−1076.

[42] 陈海生,刘畅,徐玉杰,等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术,2021,10(5):1477−1485.

CHEN Haisheng,LIU Chang,XU Yujie,et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology,2021,10(5):1477−1485.

[43] 刘峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213.

LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.

[44] 郭平业,王蒙,孙晓明,等. 废弃矿井地下空间反季节循环储能研究[J]. 煤炭学报,2022,47(6):2193−2206.

GUO Pingye,WANG Meng,SUN Xiaoming,et al. Study on off–season cyclic energy storage in underground space of abandoned mine[J]. Journal of China Coal Society,2022,47(6):2193−2206.

[45] HAHN F,BUSSMANN G,JAGERT F,et al. Reutilization of mine water as a heat storage medium in abandoned mines[C]//Proceedings from the 11th ICARD| IMWA| MWD 2018 Conference. Pretoria,South Africa, 2018.

[46] MADLENER R,SPECHT J M. An exploratory economic analysis of underground pumped–storage hydro powder plants in abandoned deep coal mines[J]. Energies,2020,13(21):5634.

[47] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308−3318.

BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society,2021,46(10):3308−3318.

[48] JAVIER M,ALMUDENA O,FERNANDEZ–ORO J M,et al. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings[J]. Renewable Energy,2020,146:1166−1176.

[49] FARR G,BUSBY J. The thermal resource of mine waters in abandoned coalfields[C]//Opportunities and challenges for the United Kingdom:Proceedings World Geothermal Congress 2020. Reykjavik,Iceland,2020.

[50] 张源,他旭鹏,师鹏,等. 废弃矿井蓄洪储能与取热综合利用模式研究[J]. 煤炭科学技术,2022:1–8[2022-09-10]. DOI:10.13199/j.cnki.cst.2022–0323.

ZHANG Yuan,TA Xupeng,SHI Peng,et al. Energy storage via storing flood in abandoned mines and low temperature heat energy utilization from mine water[J]. Coal Science and Technology,2022:1−8 [2022-09-10]. DOI:10.13199/j.cnki.cst.2022–0323.

[51] 李仲奎,马芳平,刘辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报,2003,22(增刊1):2121−2126.

LI Zhongkui,MA Fangping,LIU Hui. Underground engineering problems in compressed air energy storage and its developing future[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(Sup.1):2121−2126.

[52] 周波. 大型压气蓄能发电系统的开发[J]. 电器工业,2004,3:43−45.

ZHOU Bo. Development of large–scale EPC energy generation systems[J]. China Electrical Equipment Industry,2004,3:43−45.

[53] ZHANG Guimin,LI Yinping,DAEMEN J J K,et al. Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations:A case study in Huai’an City,China[J]. Rock Mechanics and Rock Engineering,2015,48(5):2111−2127.

[54] PEI Peng,KOROM S F,LING Kegang,et al. Thermodynamic impact of aquifer permeability on the performance of a compressed air energy storage plant[J]. Energy Conversion and Management,2015,97:340−350.

[55] CROTOGINO F,SCHNEIDER G S,EVANS D J. Renewable energy storage in geological formations[J]. Proceedings of the Institution of Mechanical Engineers Part A:Journal of Power and Energy,2018,232(1):100−114.

[56] SCHMIDT F,MENENDEZ J,KONIETZKY H,et al. Converting closed mines into giant batteries:Effects of cyclic loading on the geomechanical performance of underground compressed air energy storage systems[J]. Journal of Energy Storage,2020,32:101882.

[57] 申朗. 利用废弃矿井的压缩空气蓄能发电站[J]. 今日科技,2006(11):27.

SHEN Lang. Compressed air storage power station using abandoned mines[J]. Today Science & Technology,2006(11):27.

[58] 何秋德,陈宁,罗萍嘉. 基于压缩空气蓄能技术的煤矿废弃巷道再利用研究[J]. 矿业研究与开发,2013,33(4):37−39.

HE Qiude,CHEN Ning,LUO Pingjia. Research on reuse of abandoned roadway in coal mine based on the compressed air energy storage technology[J]. Mining Research and Development,2013,33(4):37−39.

[59] 王帅,蒲宝基,蹇军强,等. 废弃煤矿压缩空气储能地质安全稳定性分析[J]. 煤炭工程,2020,52(8):133−137.

WANG Shuai,PU Baoji,JIAN Junqiang,et al. Geological safety and stability analysis on compressed air energy storage of abandoned coal mine[J]. Coal Engineering,2020,52(8):133−137.

[60] 吴迪. 废弃煤矿地下空间压缩空气储能的多物理场耦合理论研究[D]. 徐州:中国矿业大学,2020.

WU Di. A multiphysical coupling theory for compressed air energy storage in abandoned coal mine underground caverns[D]. Xuzhou:China University of Mining and Technology,2020.

[61] 良言. 能源革命又一典范项目[N]. 大同日报,2019-09-11(3).

[62] 郗富瑞,张进德,王延宇,等. 中国废弃矿山地下抽水蓄能电站技术要点与可行性分析[J]. 科技导报,2020,38(11):41−50.

XI Furui,ZHANG Jinde,WANG Yanyu,et al. Technical key points and feasibility analysis of underground pumped storage power station in built abandoned mines in China[J]. Science & Technology Review,2020,38(11):41−50.

[63] 温永玲. 地下空间与储能[J]. 地下空间与工程学报,1986,1:66−81.

WEN Yongling. Underground space and energy storage[J]. Chinese Journal of Underground Space and Engineering,1986,1:66−81.

[64] XU Jing,WANG Ruzhu,LI Yue. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy,2014,103:610−638.

[65] LI Baiyi,ZHANG Jixiong,GHOREISHI–MADISEH S A,et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines[J]. Journal of Cleaner Production,2020,275:122647.

[66] 马冰,贾凌霄,于洋,等. 地球科学与碳中和:现状与发展方向[J]. 中国地质,2021,48(2):347−358.

MA Bing,JIA Lingxiao,YU Yang,et al. Geoscience and carbon neutralization:Current status and development direction[J]. Geology in China,2021,48(2):347−358.

[67] IBRAHIM H,ILINCA A,PERRON J. Energy storage systems:Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews,2008,12(5):1221−1250.

[68] 刘浪,辛杰,张波,等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报,2018,43(7):1811−1820.

LIU Lang,XIN Jie,ZHANG Bo,et al. Basic theories and applied exploration of functional backfill in mines[J]. Journal of China Coal Society,2018,43(7):1811−1820.

[69] 肖立业,张京业,聂子攀,等. 地下储能工程[J]. 电工电能新技术,2022,41(2):1−9.

XIAO Liye,ZHANG Jingye,NIE Zipan,et al. Underground energy storage engineering[J]. Advanced Technology of Electrical Engineering and Energy,2022,41(2):1−9.

[70] 姜楠. 退役矿井在可再生能源开发中再利用的研究与思考[J]. 可再生能源,2014,32(6):896−900.

JIANG Nan. Study on recycling of ex–service mine shaft in developing renewable energy[J]. Renewable Energy Resources,2014,32(6):896−900.

[71] 霍冉,徐向阳,姜耀东. 国外废弃矿井可再生能源开发利用现状及展望[J]. 煤炭科学技术,2019,47(10):267−273.

HUO Ran,XU Xiangyang,JIANG Yaodong. Status and prospect on development and utilization of renewable energy in abandoned mines abroad[J]. Coal Science and Technology,2019,47(10):267−273.

[72] 董家伟,李毅. 含水层压缩空气储能选址评价方法研究[J]. 安全与环境工程,2021,28(3):228−239.

DONG Jiawei,LI Yi. Study of the site evaluation of compressed air energy storage in aquifers[J]. Safety and Environmental Engineering,2021,28(3):228−239.

[73] 郭朝斌,李采,杨利超,等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查,2021,8(4):109−119.

GUO Chaobin,LI Cai,YANG Lichao,et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China,2021,8(4):109−119.

[74] GUO Chaobin,LI Cai,ZHANG Keni,et al. The promise and challenges of utility−scale compressed air energy storage in aquifers[J]. Applied Energy,2021,286:116513.

[75] 梅生伟,公茂琼,秦国良,等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术,2017,41(10):3392−3399.

MEI Shengwei,GONG Maoqiong,QIN Guoliang,et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology,2017,41(10):3392−3399.

[76] 徐新桥,杨春和,李银平. 国外压气蓄能发电技术及其在湖北应用的可行性研究[J]. 岩石力学与工程学报,2006,25(增刊2):3987−3992.

XU Xinqiao,YANG Chunhe,LI Yinping. Review on compressed air energy storage abroad and its feasibility application to Hubei Province[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup.2):3987−3992.

[77] HE Wei,WANG Jihong,WANG Yang,et al. Study of cycle–to–cycle dynamic characteristics of adiabatic compressed air energy storage using packed bed thermal energy storage[J]. Energy,2017,141:2120−2134.

[78] 金维平,彭益成. 硬岩地区压缩空气储能工程地下储气洞室选址方法研究[J]. 电力与能源,2017,38(1):63−67.

JIN Weiping,PENG Yicheng. Underground gas storage cavern location method for compressed air energy storage engineering in hard rock area[J]. Power and Energy,2017,38(1):63−67.

[79] 谢友泉,高辉,苏志国,等. 废弃矿井资源的可再生能源开发利用[J]. 可再生能源,2020,38(3):423−426.

XIE Youquan,GAO Hui,SU Zhiguo,et al. Exploitation and utilization of renewable energy from waste mine resources[J]. Renewable Energy Resources,2020,38(3):423−426.

[80] 周瑜,夏才初,赵海斌,等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报,2017,36(2):297−309.

ZHOU Yu,XIA Caichu,ZHAO Haibin,et al. A method for estimating air leakage through inner seals and mechanical responses of the surrounding rock of lined rock caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):297−309.

[81] 许守平,李相俊,惠东. 大规模电化学储能系统发展现状及示范应用综述[J]. 电力建设,2013,34(7):73−80.

XU Shouping,LI Xiangjun,HUI Dong. A review of development and demonstration application of large–scale electrochemical energy storage[J]. Electric Power Construction,2013,34(7):73−80.

[82] 李建波,闫云飞,高伟,等. 生物质发酵产热–小型温室棚联用对春冬季烟苗生长温度调控的数值研究[J]. 生态学报,2022,42(19):8002−8014.

LI Jianbo,YAN Yunfei,GAO Wei,et al. Numerical study on temperature control of tobacco seedlings in spring and winter using a biomass fermentation heat production–small greenhouse combination[J]. Acta Ecologica Sinica,2022,42(19):8002−8014.

[83] 鲍家泽,王如平,马玉银,等. 工程应用视域下农业生物质厌氧发酵资源化技术综述与建议[J]. 浙江农业科学,2022,63(6):1309−1313.

BAO Jiaze,WANG Ruping,MA Yuyin,et al. Review on the utilization of agricultural biomass by anaerobic fermentation from the perspective of engineering application[J]. Journal of Zhejiang Agricultural Sciences,2022,63(6):1309−1313.

[84] WANG Fangqian,OUYANG Denghao,ZHOU Ziyuan,et al. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage[J]. Journal of Energy Chemistry,2021,57:247−280.

[85] 张德俐,王芳,易维明,等. 木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J]. 农业工程学报,2021,37(21):225−236.

ZHANG Deli,WANG Fang,YI Weiming,et al. Thermochemical conversion and utilization of digestates from anaerobic digestion of lignocellulosic biomass[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(21):225−236.

[86] 潘松波. 北方地区生物质废弃物沼气发酵技术研究[J]. 中国高新科技,2021(17):149−150.

PAN Songbo. Study on biogas fermentation technology of biomass waste in North China[J]. China High and New Technology,2021(17):149−150.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.