Coal Geology & Exploration


The evaluation on resistance to seepage failure is an important fundamental work for the prevention and control of water-sand mixture inrush during coal mining near the unconsolidated aquifers. However, no normative methods and standards have been developed at present. The key to evaluate the resistance to seepage failure of unconsolidated aquifers and weathered zones is to determine their hydraulic gradient and the critical hydraulic gradient. Herein, this study reviewed the determination method of critical hydraulic gradient for soil flow and internal erosion, and pointed out the different characteristics between the critical hydraulic gradient for water-sand mixture inrush near unconsolidated aquifers induced by coal mining and the traditional critical hydraulic gradient. Besides, the calculation formula of the critical hydraulic gradient of resistance to seepage failure of the loose sand layers, clay layers and the weathered zones of bedrock were obtained for the concentrated channel, with consideration to the outlet size of the free-face and the physical and mechanical properties of the rock and soil layers. On this basis, this study verified the applicability of the critical hydraulic gradient formula for water-sand mixture inrush by the experimental results, and analyzed the sensitivity of single-and multiple-factor parameters to the critical hydraulic gradient. The analysis results show that the fracture aperture is the most important factor affecting the critical hydraulic gradient, and controlling the overburden failure induced by mining is a key measure to reduce the disaster of water-sand mixture inrush in actual engineering. Moreover, the critical hydraulic gradient of the coal-measure weathered zone is closely related to the content of clay components and the applied load. Definitely, the critical hydraulic gradient is ranged from 2.9 to 67.2 when the proportion (by mass) of clay in the weathered rock is 5%‒40%. Thus, a fitting estimation relationship using Gaussian function and the estimation formula considering the overlying load were given. Generally, the results will provide a reference for the calculation of critical hydraulic gradient for the evaluation of water-sand mixture inrush due to coal mining near the unconsolidated aquifers.


critical hydraulic gradient, seepage deformation, unconsolidated aquifers, weathered zones, water-sand mixture inrush, resistance to seepage failure




[1] 隋旺华,董青红,蔡光桃,等. 采掘溃砂机理与预防[M]. 北京:地质出版社,2008.

[2] 隋旺华,刘佳维,高炳伦,等. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报,2019,44(8):2419−2426.

SUI Wanghua,LIU Jiawei,GAO Binglun,et al. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society,2019,44(8):2419−2426.

[3] 隋旺华. 矿山安全地质学:综述[J]. 工程地质学报,2021,29(4):901−916.

SUI Wanghua. Mine safety geology:A review[J]. Journal of Engineering Geology,2021,29(4):901−916.

[4] 隋旺华. 基于结构水文地质学的采掘诱发高势能突水溃砂主动防控[J]. 工程地质学报,2022,30(1):101−109.

SUI Wanghua. Active prevention and control of water–sand mixture inrush with high potential energy due to mining based on structural hydrogeology[J]. Journal of Engineering Geology,2022,30(1):101−109.

[5] 隋旺华. 矿山采掘岩体渗透变形灾变机理及防控I:顶板溃水溃砂[J]. 地球科学与环境学报,2022,44(6):903−921.

SUI Wanghua. Catastrophic mechanism of seepage deformation and failure of mining rock mass and its prevention and control I:Water–sand mixture inrush from seam roof[J]. Journal of Earth Sciences and Environment,2022,44(6):903−921.

[6] 范立民,冀瑞君. 西部高强度采煤矿井灾害新灾种–突水溃沙[J]. 地质论评,2015,61(增刊1):13−15.

FAN Limin,JI Ruijun. A new disaster of high intensity coal mine in western China:Water inrush and sand burst[J]. Geological Review,2015,61(Sup.1):13−15.

[7] SUI Wanghua,SUN Yajun,WANG Changsheng. An interdisciplinary response to mine water challenges[M]. Xuzhou:China University of Mining and Technology Press,2014.

[8] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.

[9] 国家煤矿安全监察局. 煤矿防治水规定释义[M]. 徐州:中国矿业大学出版社,2009.

[10] 武强. 煤矿防治水细则解读[M]. 北京:应急管理出版社,2018.

[11] 国家矿山安全监察局. 国家矿山安全监察局关于开展煤矿井下防溃水溃砂专项检查的通知[EB/OL]. (2021-08-19) [2023-03-06]. https://www.chinamine–safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202108/t20210819_396351.shtml.

[12] 伍永平,卢明师. 浅埋采场溃沙发生条件分析[J]. 矿山压力与顶板管理,2004,20(3):57−58.

WU Yongping,LU Mingshi. Analysis of sand inrush generation condition in coal mining of shallow coal seam[J]. Ground Pressure and Strata Control,2004,20(3):57−58.

[13] 许延春,王伯生,尤舜武. 近松散含水层溃砂机理及判据研究[J]. 西安科技大学学报,2012,32(1):63−69.

XU Yanchun,WANG Bosheng,YOU Shunwu. Mechanism and criteria of crushing sand near loosening sand stone aquifer[J]. Journal of Xi’an University of Science and Technology,2012,32(1):63−69.

[14] 隋旺华,蔡光桃,董青红. 近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J]. 岩石力学与工程学报,2007,26(10):2084−2091.

SUI Wanghua,CAI Guangtao,DONG Qinghong. Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2084−2091.

[15] 许延春. 砂土渗溃破坏性的检测方法及装置:CN101281186A[P]. 2008-10-08.

[16] 许延春. 含黏砂土流动性试验[J]. 煤炭学报,2008,33(5):496−499.

XU Yanchun. Fluidity test on sand blended with clay[J]. Journal of China Coal Society,2008,33(5):496−499.

[17] 梁燕,谭周地,李广杰. 弱胶结砂层突水、涌砂模拟试验研究[J]. 西安公路交通大学学报,1996,16(1):19−22.

LIANG Yan,TAN Zhoudi,LI Guangjie. Simulation test research on water and soil outbursts of weak binding soil[J]. Journal of Xi’an Highway University,1996,16(1):19−22.

[18] 张敏江,张丽萍. 褐煤矿区弱胶结高压水流砂层井下涌砂机理的研究[J]. 工程勘察,1997(4):36−39.

ZHANG Minjiang,ZHANG Liping. Study on underground sand inrush mechanism of weakly cemented sand layer with water high–pressure in lignite mining area[J]. Geotechnical Investigation & Surveying,1997(4):36−39.

[19] 张敏江,张丽萍,姜秀萍,等. 弱胶结砂层突涌机理及预测研究[J]. 金属矿山,2002(10):48−50.

ZHANG Minjiang,ZHANG Liping,JIANG Xiuping,et al. Study on the inrushing mechanism of weak cemented quicksand layer and its forecasting[J]. Metal Mine,2002(10):48−50.

[20] 刘杰. 土的渗透稳定与渗流控制[M]. 北京:水利电力出版社,1992.

[21] 毛昶熙. 渗流计算分析与控制(第二版)[M]. 北京:中国水利水电出版社,2003.

[22] TERZAGHI K. Soil mechanics:A new chapter in engineering science[J]. Journal of the Institution of Civil Engineers,1939,12(7):106−142.

[23] DASSANAYAKE S M,MOUSA A A,ILANKOON S,et al. Internal instability in soils:A critical review of the fundamentals and ramifications[J]. Transportation Research Record,2022,2676(4):1−26.

[24] BONELLI S. Erosion of geomaterials[M]. London:Wiley ISTE,2012.

[25] 扎马林 E A,方捷耶夫 B B. 水工建筑物[M]. 北京:高等教育出版社,1955.

[26] 沙金煊. 多孔介质中的管涌研究[J]. 水利水运科学研究,1981(3):89−93.

SHA Jinxuan. Study on piping in porous media[J]. Journal of Nanjing Hydraulic Research Institute,1981(3):89−93.

[27] 毛昶熙. 电模拟试验及渗流研究[M]. 北京:水利出版社,1981.

[28] 毛昶熙. “蒋国澄,刘宏梅. 砂砾地基上土坝的渗流控制”讨论[J]. 水利学报,1963(2):66−69.

MAO Changxi. Discussion on “JIANG Guocheng,LIU Hongmei. Seepage control of earth dams on gravel foundations”[J]. Journal of Hydraulic Engineering,1963(2):66−69.

[29] 刘杰. 缺乏中间粒径砂砾石的渗透稳定性[C]//水利水电科学研究院论文集(第一集). 北京:中国工业出版社,1963.

[30] SKEMPTON A W,BROGAN J M. Experiments on piping in sandy gravels[J]. Geotechnique,1994,44(3):449−460.

[31] MONNET A. Boulance,érosion interne,renard. Les instabilités sous écoulement[J]. Revue Franç aise de Géotechnique,1998,82:3−10.

[32] LI Maoxin. Seepage induced instability in widely graded soils[D]. Vancouver:The University of British Columbia,2008.

[33] 王明年,江勇涛,于丽,等. 砂性土细颗粒起动临界水力坡降计算方法[J]. 岩土力学,2020,41(8):2515−2524.

WANG Mingnian,JIANG Yongtao,YU Li,et al. Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil[J]. Rock and Soil Mechanics,2020,41(8):2515−2524.

[34] 周玫. 黏性土地基流土破坏的临界水力坡降研究[D]. 西安:西安理工大学,2020.

ZHOU Mei. Study on critical hydraulic slope of fluid soil failure on cohesive soil[D]. Xi’ an:Xi’ an University of Technology,2020.

[35] 党发宁,周玫,李玉涛,等. 黏性土地基流土破坏的临界水力坡降研究[J]. 岩土工程学报,2021,43(增刊1):1−6.

DANG Faning,ZHOU Mei,LI Yutao,et al. Critical hydraulic gradient of soil flow failure in cohesive soil foundation[J]. Chinese Journal of Geotechnical Engineering,2021,43(Sup.1):1−6.

[36] 张玉军. 铁北煤矿松软砂岩含水层下综放开采覆岩破坏及溃砂预测研究[D]. 北京:煤炭科学研究总院,2005.

ZHANG Yujun. Predicting study on inrush of sand and overburden failure of the full mechanized top–coal caving under loosening sandstone aquifer in the Tie−bei Coal Mine[D]. Beijing:China Coal Research Institute,2005.

[37] 张玉军,康永华,刘秀娥. 松软砂岩含水层下煤矿开采溃砂预测[J]. 煤炭学报,2006,31(4):429−432.

ZHANG Yujun,KANG Yonghua,LIU Xiu’e. Predicting on inrush of sand of mining under loosening sandstone aquifer[J]. Journal of China Coal Society,2006,31(4):429−432.

[38] 吴璋,王晓东,李建文,等. 神府矿区浅埋薄基岩煤层顶板涌水溃砂防控技术[J]. 煤矿安全,2016,47(11):150−154.

WU Zhang,WANG Xiaodong,LI Jianwen,et al. Control technology of water–sand inrush for shallow buried and thin bedrock coal seam in Shenfu Coalfield[J]. Safety in Coal Mines,2016,47(11):150−154.

[39] 连会青,夏向学,冉伟,等. 厚松散层薄基岩浅埋煤层突水溃砂的可能性分析[J]. 煤矿安全,2015,46(2):168−171.

LIAN Huiqing,XIA Xiangxue,RAN Wei,et al. Possibility analysis of water and sand inrush at shallow buried coal seam with unconsolidated formation and thin bedrock[J]. Safety in Coal Mines,2015,46(2):168−171.

[40] 李建文. 薄基岩浅埋煤层开采突水溃砂致灾机理及防治技术研究[D]. 西安:西安科技大学,2013.

LI Jianwen. Study on the mechanism and prevention and control technics of sand inrush and water blasting of shallow buried coal seam mining under thin bedrock[D]. Xi’an:Xi’an University of Science and Technology,2013.

[41] 李建文. 煤矿过沟开采突水溃砂临界水力坡度计算及应用[J]. 中国煤炭地质,2016,28(6):55−57.

LI Jianwen. Water bursting quicksand critical hydraulic gradient computation and its application in coal mining under ditch[J]. Coal Geology of China,2016,28(6):55−57.

[42] 王世东,沈显华,牟平. 韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J]. 煤炭科学技术,2009,37(1):92−95.

WANG Shidong,SHEN Xianhua,MOU Ping. Prediction of sand and water inrush in seam with shallow depth and under rich water aquifer in Hanjiawan Mine[J]. Coal Science and Technology,2009,37(1):92−95.

[43] 霍军鹏. 浅埋富水区下安全开采技术研究[D]. 西安:西安科技大学,2017.

HUO Junpeng. Study on safe mining technology under shallow–buried and water–rich zone[D]. Xi’an:Xi’an University of Science and Technology,2017.

[44] 罗利卜. 霍洛湾煤矿浅埋薄基岩煤层顺沟安全开采关键技术研究[D]. 西安:西安科技大学,2016.

LUO Libo. Research on the key technology of safety mining along valleys in shallow buried thin bedrock coal seam of Huoluowan Mine[D]. Xi’an:Xi’an University of Science and Technology,2016.

[45] 高安民,祝仰奎,王庆涛. 松散砂层下煤层开采顶板溃砂的水动力条件分析[J]. 煤炭技术,2018,37(2):219−222.

GAO Anmin,ZHU Yangkui,WANG Qingtao. Analysis of roof sand–inrush hydrodynamic condition during shallow seam mining under unconsolidated sand aquifer[J]. Coal Technology,2018,37(2):219−222.

[46] 李博. 浅埋煤层覆岩活动规律与顶板水涌出关系数值模拟研究[D]. 西安:西安科技大学,2019.

LI Bo. Numerical simulation study on the relationship between the law of overlying strata and the emergence of roof water in shallow coal seam[D]. Xi’an:Xi’an University of Science and Technology,2019.

[47] 罗其明. 顾北煤矿覆岩破坏移动规律及渗透破坏研究[D]. 合肥:安徽建筑大学,2022.

LUO Qiming. Study on movement law of overlying rock failure and seepage failure in Gubei Coal Mine[D]. Hefei:Anhui Jianzhu University,2022.

[48] 罗其明,宣以琼. 张集煤矿1411工作面的溃砂风险评估[J]. 湖北理工学院学报,2022,38(2):32−37.

LUO Qiming,XUAN Yiqiong. Sand inrush risk assessment on 1411 working face in Zhangji Coal Mine[J]. Journal of Hubei Polytechnic University,2022,38(2):32−37.

[49] 张曼曼. 留设防砂煤(岩)柱开采松散含水层渗透破坏研究[D]. 淮南:安徽理工大学,2021.

ZHANG Manman. Study on seepage failure of loose aquifer mining with sand proof coal (rock) pillar[D]. Huainan:Anhui University of Science and Technology,2021.

[50] 蔡光桃. 采煤冒裂带上覆松散土层渗透变形研究[D]. 徐州:中国矿业大学,2005.

CAI Guangtao. Research on the seepage deformation of overburden soil layers above fractured rock mass due to coal mining[D]. Xuzhou:China University of Mining and Technology,2005.

[51] 张彬. 基于组合结构稳定性的薄基岩工作面溃水溃砂机理研究[D]. 北京:中国矿业大学(北京),2019.

ZHANG Bin. Study on mechanism of water and sand inrush in thin bedrock working face based on stability of combined structure[D]. Beijing:China University of Mining and Technology (Beijing),2019.

[52] 王翱翔. 砂土地层隧道衬砌漏砂(水)诱发地层塌陷的机理研究[D]. 大连:大连交通大学,2020.

WANG Aoxiang. The mechanism study of strata subsidence induced by sand (water) leakage of tunnel lining in sandy stratum[D]. Dalian:Dalian Jiaotong University,2020.

[53] 石磊. 伊北矿区弱胶结地层水砂溃涌机制与预测方法研究[D]. 北京:煤炭科学研究总院,2022.

SHI Lei. Study on mechanism of water and sand inrush in weakly cemented strata and prediction method in Yibei mining area[D]. Beijing:China Coal Research Institute,2022.

[54] 杜永. 隐伏型煤系风化岩体渗透特性及防溃砂作用研究[D]. 徐州:中国矿业大学,2007.

DU Yong. Research on seepage characteristics and preventing gushing sand of coal−measure concealed weathered rock mass[D]. Xuzhou:China University of Mining and Technology,2007.

[55] SUI Wanghua,LIU Jinyuan,DU Yong. Permeability and seepage stability of coal–reject and clay mix[J]. Procedia Earth and Planetary Science,2009,1(1):888−894.

[56] SUI Wanghua,LIANG Yankun,ZHANG Xinjia,et al. An experimental investigation on the speed of sand flow through a fixed porous bed[J]. Scientific Reports,2017,7:54.

[57] LIANG Yankun,SUI Wanghua,JIANG Tong,et al. Experimental investigation on the transport behavior of a sand/mud/water mixture through a mining–induced caving zone[J]. Mine Water and the Environment,2022,41:629−639.

[58] 张杰,侯忠杰,马砺. 浅埋煤层老顶岩块回转过程中的溃沙分析[J]. 西安科技大学学报,2006,26(2):158−160.

ZHANG Jie,HOU Zhongjie,MA Li. Sand inrush in roof rock’s rotating in shallow seam mining[J]. Journal of Xi’an University of Science and Technology,2006,26(2):158−160.

[59] 张玉军,李凤明. 采动覆岩裂隙分布特征数字分析及网络模拟实现[J]. 煤矿开采,2009,14(5):4−6.

ZHANG Yujun,LI Fengming. Analysis of cracks distribution characteristic of overlying strata influenced by mining and network simulation[J]. Coal Mining Technology,2009,14(5):4−6.

[60] 王国立. 浅埋薄基岩采煤工作面覆岩纵向贯通裂隙演化规律研究[D]. 北京:中国矿业大学(北京),2016.

WANG Guoli. The study on the change law of longitudinal transfixion cracks in shallow buried coal face with thin bedrock[D]. Beijing:China University of Mining and Technology (Beijing),2016.

[61] MOFFAT R M,FANNIN R J F. A hydromechanical relation governing internal stability of cohesionless soil[J]. Canadian Geotechnical Journal,2011,48(3):413−424.

[62] MOFFAT R M,FANNIN R J F,GARNER S J G. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal,2011,48(3):399−412.

[63] 隋旺华,张改玲. 长壁式采煤的采前工程地质勘探工作[J]. 煤田地质与勘探,1988,16(5):37−42.

SUI Wanghua,ZHANG Gailing. Pre–mining engineering geological exploration work for longwall coal mining[J]. Coal Geology & Exploration,1988,16(5):37−42.

[64] 隋旺华. 红层软岩遇水失稳特性及建井实践[J]. 煤田地质与勘探,1991,19(1):41−46.

SUI Wanghua. The failure characteristic of red beds soft rock in water and shafting practices[J]. Coal Geology & Exploration,1991,19(1):41−46.

[65] 张改玲,狄乾生,隋旺华,等. 煤层开采沉陷的工程地质勘探与预计方法[J]. 煤田地质与勘探,1991,19(6):41−45.

ZHANG Gailing,DI Qiansheng,SUI Wanghua,et al. Engineering geological prospecting and predicting method for subsidence due to mining[J]. Coal Geology & Exploration,1991,19(6):41−45.

[66] 隋旺华,张改玲,沈文. 矿区深厚土层的高压固结与次固结特性[J]. 煤田地质与勘探,1994,22(2):37−40.

SUI Wanghua,ZHANG Gailing,SHEN Wen. High pressure consolidation and secondary consolidation characteristics of deep soil layers in a coal mining area[J]. Coal Geology & Exploration,1994,22(2):37−40.

[67] 郭鹏辉,林玉祥,胡燕. 区域性温度因素对饱和粘土固结的影响[J]. 煤田地质与勘探,2012,40(2):62−66.

GUO Penghui,LIN Yuxiang,HU Yan. The regional temperature effects on consolidation of saturated clays[J]. Coal Geology & Exploration,2012,40(2):62−66.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.