Coal Geology & Exploration


WANG Jiyang, Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;Innovation Academy for Earth Science, CAS, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaFollow
KONG Yanlong, Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;Innovation Academy for Earth Science, CAS, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
DUAN Zhongfeng, School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
ZHANG Jixiong, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
LUO Xilian, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
HUANG Yonghui, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China; College of Geosciences, China University of Petroleum, Beijing 102249, China
LUO Naning, Shaanxi Coal Geology Investigation Research Institute Co., Ltd., Xi’an 710021, China
CHENG Yuanzhi, Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; Innovation Academy for Earth Science, CAS, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
ZHOU Nan, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
ZHANG Weizun, Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
PANG Zhonghe, Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; Innovation Academy for Earth Science, CAS, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


The development of geothermal energy in coalfield can not only improve the temperature environment of coal mining, but also turn waste into treasure through the clean utilization of geothermal energy. Especially, it is of great prospect to store energy in the mined-out area of coalfield under the “dual carbon” goal at present. Herein, in this paper, it was estimated that the geothermal reserves in the main coal-bearing areas of China were 1.12 × 1019 kJ, equivalent to 379.539 billion tons of standard coal, and the recoverable geothermal reserves were 1.71 × 1018 kJ, equivalent to 56.931 billion tons of standard coal. Among them, the recoverable geothermal reserves of the coal-bearing area in North China account for about 74.7%, especially in the western area (Jin‒Shaan‒Meng‒Ning sub-region), where seven coal bases were distributed, including Shendong, Jinbei, Jindong, Jinzhong, Shaanbei, Huanglong (Huating) and Ningdong, with the richest coal resources, accounting for nearly 48.7%. It was further pointed out that the “synergetic mining of coal and geothermal energy” would be the main form of geothermal development and utilization in coalfield areas, which included three methods of heat extraction, such as pipe filling and burying, mine water in coal mine goaf and deep coal mine aquifers. In addition, it was proposed to utilize the coal mine goaf and the space freed up after drainage as the “geothermal reservoirs”, which should be taken as the direction of working in the next step. Besides, a detailed review was presented regarding the heat storage with backfill (phase-change) material, pumped storage with abandoned coalfield and energy storage with compressed air in the abandoned coalfield. Last but not least, a brief introduction was presented for the thermal disaster prevention and control technology of coal mine. In conclusion, the scaled coalfield energy storage, thermal disaster prevention and control, and geothermal utilization will be the main directions of coalfield geothermal research, development and utilization. Which is also an important channel to achieve the green transformation of coal mines and the national "dual carbon" goal.


coalfield geothermal energy, dual carbon, energy storage, geothermal utilization, resource assessment




[1] 汪集暘,庞忠和,孔彦龙,等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展,2020,16(3/4):294–298.

WANG Jiyang,PANG Zhonghe,KONG Yanlong,et al. Status and prospects of geothermal clean heating industry in China[J]. Science & Technology for Development,2020,16(3/4):294–298.

[2] 蔡美峰,马明辉,潘继良,等. 矿产与地热资源共采模式研究现状及展望[J]. 工程科学学报,2022,44(10):1669−1681.

CAI Meifeng,MA Minghui,PAN Jiliang,et al. Co–mining of mineral and geothermal resources:A state–of–the–art review and future perspectives[J]. Chinese Journal of Engineering,2022,44(10):1669−1681.

[3] 张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693.

ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693.

[4] 余恒昌,邓孝,陈碧琬. 矿山地热与热害治理[M]. 北京:煤炭工业出版社,1991.

[5] 庞忠和,孙占学,段忠丰. 矿山地热[M]// 汪集暘,等. 地热学及其应用. 北京:科学出版社,2015.

[6] 邓孝. 矿山地热研究的回顾与展望[J]. 地球科学进展,1992,7(3):20−24.

DENG Xiao. Review and prospect of study in mining geothermics[J]. Advance in Earth Sciences,1992,7(3):20−24.

[7] 蔡美峰,薛鼎龙,任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报,2019,41(4):417−426.

CAI Meifeng,XUE Dinglong,REN Fenhua. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering,2019,41(4):417−426.

[8] 刘志强,陈湘生,宋朝阳,等. 我国深部高温地层井巷建设发展路径与关键技术分析[J]. 工程科学学报,2022,44(10):1733−1745.

LIU Zhiqiang,CHEN Xiangsheng,SONG Zhaoyang,et al. Development path and key technology analysis of shaft and tunnel construction in deep stratum with high temperature[J]. Chinese Journal of Engineering,2022,44(10):1733−1745.

[9] 张吉雄,张强,巨峰,等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报,2018,43(2):377−389.

ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J]. Journal of China Coal Society,2018,43(2):377−389.

[10] 中国科学院地质研究所地热组. 我国煤矿地温特征及研究方法[J]. 煤田地质与勘探,1976(5):1−20.

Geothermal Group,Institute of Geology,Chinese Academy of Sciences. Geothermal characteristics and research methods of coal mines in China[J]. Coal Geology & Exploration,1976(5):1−20.

[11] 郭平业,卜墨华,张鹏,等. 矿山地热防控与利用研究进展[J]. 工程科学学报,2022,44(10):1632−1651.

GUO Pingye,BU Mohua,ZHANG Peng,et al. Research progress on the prevention and utilization of mine geothermal energy[J]. Chinese Journal of Engineering,2022,44(10):1632−1651.

[12] 谢和平,刘见中,高明忠,等. 特殊地下空间的开发利用[M]. 北京:科学出版社,2019.

[13] 汪集暘. “地球充电/热宝”:一种地热开发利用的新途径[J]. 科技导报,2018,36(24):1.

WANG Jiyang. Earth charger:A new way of geothermal exploitation and utilization[J]. Science & Technology Review,2018,36(24):1.

[14] 曹代勇,张守仁,穆宣社,等. 中国含煤岩系构造变形控制因素探讨[J]. 中国矿业大学学报,1999,28(1):25−28.

CAO Daiyong,ZHANG Shouren,MU Xuanshe,et al. Study on control factors of deformation of coal measures in China[J]. Journal of China University of Mining & Technology,1999,28(1):25−28.

[15] 王志军. 高温矿井地温分布规律及其评价系统研究[D]. 青岛:山东科技大学,2006.

WANG Zhijun. Study on earth temperature distribution law and earth temperature assessment system in high temperature mine[D]. Qingdao:Shandong University of Science and Technology,2006.

[16] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39−46.

LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39−46.

[17] 王钧,黄尚瑶,黄歌山,等. 中国地温分布的基本特征[M]. 北京:地震出版社,1990.

[18] 姜光政,王亚奇,胡杰,等. 中国中–高温地热资源勘探方向与优选靶区[J]. 科技导报,2022,40(20):76−82.

JIANG Guangzheng,WANG Yaqi,HU Jie,et al. Medium–high temperature geothermal resources in China:Exploration directions and optimizing prospecting targets[J]. Science & Technology Review,2022,40(20):76−82.

[19] 宋洪柱.中国煤炭资源分布特征与勘查开发前景研究[D]. 中国地质大学 (北京),2013.

SONG Hongzhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of China[D]. Beijing:China University of Geosciences (Beijing),2013.

[20] XU Wei,HUANG Shaopeng,ZHANG Jiong,et al. Geothermal gradient and heat flow of the Erlian Basin and adjacent areas,northern China:Geodynamic implication[J]. Geothermics,2021,92:102049.

[21] 夏晓雨. 鄂尔多斯盆地西南部中–新生代岩石圈热结构及其对构造热演化差异性的制约[D]. 西安:西北大学,2020.

XIA Xiaoyu. The meso–cenozoic lithospheric thermal structure and its constraints on the differential tectonic thermal evolution in the Southwestern Ordos Basin[D]. Xi’an:Northwest University,2020.

[22] 兰镭,左银辉,冯仁朋,等. 川东地区大地热流及其对地热资源评价的启示[J]. 地球学报,2023,44(1):169−179.

LAN Lei,ZUO Yinhui,FENG Renpeng,et al. Terrestrial heat flow in eastern Sichuan Basin and its revelation to geothermal resource evaluation[J]. Acta Geoscientica Sinica,2023,44(1):169−179.

[23] 孙少川,国殿斌,李令喜,等. 四川盆地大地热流特征及热储系统类型[J]. 天然气工业,2022,42(4):21−34.

SUN Shaochuan,GUO Dianbin,LI Lingxi,et al. Characteristics of terrestrial heat flows and types of thermal reservoir systems in the Sichuan Basin[J]. Natural Gas Industry,2022,42(4):21−34.

[24] 罗昕. 塔里木盆地岩石热物性预测和现今地温场研究[D]. 北京:中国石油大学(北京),2021.

LUO Xin. Prediction of rock thermophysical properties and current geothermal field research in Tarim Basin[D]. Beijing:China University of Petroleum,2021.

[25] 邹开真,庞玉茂,陈琰,等. 柴达木盆地英东地区大地热流及影响因素[J/OL]. 地球科学,2022:1–17[2023-03-13]. http://kns.cnki.net/kcms/detail/42.1874.P.20220419.0821.002.html.

ZOU Kaizhen,PANG Yumao,CHEN Yan,et al. Heat flow of the Yingdong Area in Qaidam Basin and its influencing factors[J/OL]. Earth Science,2022:1–17[2023-03-13]. http://kns.cnki.net/kcms/detail/42.1874.P.20220419.0821.002.html.

[26] 沈显杰,张文仁,杨淑贞,等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报,1990(2):203−214.

SHEN Xianjie,ZHANG Wenren,YANG Shuzhen,et al. Heat flow evidence for the differentiated crust–mantle thermal structures of the northern and southern terranes of the Qinghai–Xizang Plateau[J]. Bulletin of the Chinese Academy of Geological Sciences,1990(2):203−214.

[27] 马晓冰,孔祥儒. 青藏高原岩石圈热状态及其东西部差异[J]. 地球物理学进展,2001,16(3):12−20.

MA Xiaobing,KONG Xiangru. The thermal status of Qinghai–Tibet Plateau and the differences between the western and the eastern plateau[J]. Progress in Geophysics,2001,16(3):12−20.

[28] 徐胜平. 两淮煤田地温场分布规律及其控制模式研究[D]. 淮南:安徽理工大学,2014.

XU Shengping. Study on the distribution law and control mode of geothermal field in Huainan–Huaibei Coalfield[D]. Huainan:Anhui University of Science and Technology,2014.

[29] 王社教,李峰,闫家泓,等. 油田地热资源评价方法及应用[J]. 石油学报,2020,41(5):553−564.

WANG Shejiao,LI Feng,YAN Jiahong,et al. Evaluation methods and application of geothermal resources in oilfields[J]. Acta Petrolei Sinica,2020,41(5):553−564.

[30] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449−459.

WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449−459.

[31] HUANG Yonghui,KONG Yanlong,CHENG Yuanzhi,et al. Evaluating the long–term sustainability of geothermal energy utilization from deep coal mines[J]. Geothermics,2023,107:102584.

[32] 李百宜,张吉雄,刘恒凤,等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报,2022,39(6):1161−1168.

LI Baiyi,ZHANG Jixiong,LIU Hengfeng,et al. Energy–stored backfilling technology and energy storage efficiency enhancement mechanism in coal mine goaf[J]. Journal of Mining & Safety Engineering,2022,39(6):1161−1168.

[33] 谢和平,王金华,鞠杨,等. 煤炭革命的战略与方向[M]. 北京:科学出版社,2018.

[34] BAO Ting,MELDRUM J,GREEN C,et al. Geothermal energy recovery from deep flooded copper mines for heating[J]. Energy Conversion and Management,2019,183:604−616.

[35] 李百宜. 煤矿储能式充填空间热能存取机理及方法研究[D]. 徐州:中国矿业大学,2020.

LI Baiyi. Thermal energy storage mechanism and method in underground energy−stored functional backfilled stopes[D]. Xuzhou:China University of Mining and Technology,2020.

[36] 吴娟. 热化学储能体系Ca(OH)2/CaO+H2O的性能研究[D]. 广州:华南理工大学,2015.

WU Juan. Study on properties of thermochemical energy storage system of Ca(OH)2/CaO+H2O[D]. Guangzhou:South China University of Technology,2015.

[37] 吴金焱. 荷兰海尔伦市废弃煤矿矿井水地热能开发利用工程实践[J]. 中国煤炭,2020,46(1):94−98.

WU Jinyan. Practice on geothermal energy development and utilization from abandoned coal mine water in Heerlen of Netherlands[J]. China Coal,2020,46(1):94−98.

[38] ZHANG Xiaoyan,XU Muyan,LIU Lang,et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology,2020,9(2):2164−2175.

[39] LIU Hengfeng,RODRIGUEZ–DONO A,ZHANG Jixiong,et al. A new method for exploiting mine geothermal energy by using functional cemented paste backfill material for phase change heat storage:Design and experimental study[J]. Journal of Energy Storage,2022,54:105292.

[40] LI Baiyi,ZHANG Jixiong,GHOREISHI–MADISEH S A,et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines[J]. Journal of Cleaner Production,2020,275:122647.

[41] PEREZ SILVA J,MCDERMOTT C,FRASER-HARRIS A. The value of a hole in coal:Assessment of seasonal thermal energy storage and recovery in flooded coal mines[J]. Earth Science,Systems and Society,2022,2:10044.

[42] 严永红,张兴国,李金畅. 加拿大卡尔加里市Okotoks小镇太阳能小区建设[J]. 新建筑,2005(6):26−28.

YAN Yonghong,ZHANG Xingguo,LI Jinchang. Solar community construction in drake landing solar community,Okotoks,Calgary,Canada[J]. New Architecture,2005(6):26−28.

[43] 张学清,海晓涛,高轩,等. 基于协同博弈法的抽水蓄能电站建设成本优化研究[J/OL]. 水力发电,2022:1–5 [2023-03-13]. http://kns.cnki.net/kcms/detail/11.1845.TV.20221227.1107.001.html.

ZHANG Xueqing,HAI Xiaotao,GAO Xuan,et al. Research on construction cost optimization of pumped–storage power station based on cooperative game method[J/OL]. Water Power,2022:1–5 [2023-03-13]. http://kns.cnki.net/kcms/detail/11.1845.TV.20221227.1107.001.html.

[44] 叶鹏. 废弃矿井抽水蓄能电站流体动力学分析与结构优化设计[D]. 徐州:中国矿业大学,2022.

YE Peng. Fluid dynamics analysis and structural optimization design of underground pumped–storage power station in abandoned coal mine[D]. Xuzhou:China University of Mining and Technology,2022.

[45] 姚西龙,葛帅帅,徐晓瑞. 废弃井巷抽水储能技术构想及关键技术参数研究[J]. 煤炭工程,2021,53(9):117−121.

YAO Xilong,GE Shuaishuai,XU Xiaorui. Technical conception and key technical parameters of pumped energy storage in abandoned wells and roadways[J]. Coal Engineering,2021,53(9):117−121.

[46] 谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972.

XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped–storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.

[47] XI Furui,YAN Ruiwen,SHI Jusong,et al. Pumped storage power station using abandoned mine in the Yellow River Basin:A feasibility analysis under the perspective of carbon neutrality[J]. Frontiers in Environmental Science,2022:1711.

[48] LYU Xin,ZHANG Tong,YUAN Liang,et al. Pumped storage hydropower in abandoned mine shafts:Key concerns and research directions[J]. Sustainability,2022,14(23):16012.

[49] LUKASZ B,ANNA S,SLAWOMIR D,et al. Thermodynamic and economic assessment of compressed carbon dioxide energy storage systems using a post−mining underground infrastructure[J]. Energy Conversion and Management,2021,241:114297.

[50] 杜俊生,陈结,姜德义,等. 中国废弃煤矿压气蓄能潜力与初步可行性研究[J]. 工程科学与技术,2023,55(1):253−264.

DU Junsheng,CHEN Jie,JIANG Deyi,et al. Study on the potential and pre–feasibility of compressed air energy storage of abandoned coal mines in China[J]. Advanced Engineering Sciences,2023,55(1):253−264.

[51] QIN Chao,LOTH E. Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines[J]. Applied Energy,2021,292:116867.

[52] 何秋德,陈宁,罗萍嘉. 基于压缩空气蓄能技术的煤矿废弃巷道再利用研究[J]. 矿业研究与开发,2013,33(4):37−39.

HE Qiude,CHEN Ning,LUO Pingjia. Research on reuse of abandoned roadway in coal mine based on the compressed air energy storage technology[J]. Mining Research and Development,2013,33(4):37−39.

[53] SCHMIDT F,MENENDEZ J,KONIETZKY H,et al. Converting closed mines into giant batteries:Effects of cyclic loading on the geomechanical performance of underground compressed air energy storage systems[J]. Journal of Energy Storage,2020,32:101882.

[54] DONOGHUE A M. Occupational health hazards in mining:An overview[J]. Occupational Medicine,2004,54(5):283−289.

[55] 刘卫东. 高温环境对煤矿井下作业人员影响的调查研究[J]. 中国安全生产科学技术,2007,3(3):43−45.

LIU Weidong. Survey of effect for coal mine workers in heat stress[J]. Journal of Safety Science and Technology,2007,3(3):43−45.

[56] 崔文广. 深井热害对矿工生理和生化指标的影响[D]. 武汉:华中科技大学,2008.

CUI Wenguang. Effect of heat stress in deep mine on physiological and biochemical indexes of miners[D]. Wuhan:Huazhong University of Science and Technology,2008.

[57] 陈安国. 矿井热害产生的原因、危害及防治措施[J]. 中国安全科学学报,2004,14(8):3−6.

CHEN Anguo. Formation and harmfulness of heat hazard in mine and its control measure[J]. China Safety Science Journal,2004,14(8):3−6.

[58] 卢亚菁. 不同开采阶段深井金属矿山热害及其治理方法的研究[D]. 沈阳:东北大学,2015.

LU Yajing. Study on heat harm and its treatment method of deep metal mine in different mining stages[D]. Shenyang:Northeastern University,2015.

[59] 周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225−2235.

ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225−2235.

[60] 卢新明,尹红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236−2247.

LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236−2247.

[61] 魏连江,王德明,王琪,等. 构建矿井通风可视化仿真系统的关键问题研究[J]. 煤矿安全,2007(7):6−9.

WEI Lianjiang,WANG Deming,WANG Qi,et al. Study on some key issues of constructing visual mine ventilation simulation system[J]. Safety in Coal Mines,2007(7):6−9.

[62] 刘何清,吴超,王卫军,等. 矿井降温技术研究述评[J]. 金属矿山,2005(6):43−46.

LIU Heqing,WU Chao,WANG Weijun,et al. Review of mine temperature drop technology[J]. Metal Mine,2005(6):43−46.

[63] 李国富,夏永怀,李珠. 深井巷道隔热降温技术的研究与应用[J]. 金属矿山,2010(9):152−154.

LI Guofu,XIA Yonghuai,LI Zhu. Research and application of insulating and cooling technology in deep mine roadway[J]. Metal Mine,2010(9):152−154.

[64] 庞建勇,黄金坤,姚文杰,等. 巷道隔热喷射混凝土强度及导热性能试验研究[J]. 长江科学院院报,2018,35(2):119−124.

PANG Jianyong,HUANG Jinkun,YAO Wenjie,et al. Experimental study on thermal conductivity and strength of thermal shotcrete in roadway[J]. Journal of Yangtze River Scientific Research Institute,2018,35(2):119−124.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.