Coal Geology & Exploration
Abstract
The Shanzuokou-Sihong fault, having undergone the entire evolutionary process of the Tancheng-Lujiang fault zone, exhibits segmentation during the latest activity epoch. Determining the location and origin of its activity segmentation will provide a significant reference for exploring the activity variations of its branch faults and their origins. This study investigated the activity of the Shanzuokou-Sihong fault using a three-dimensional approach combining field geological surveys, shallow seismic exploration, and cross-well stratigraphic correlation. The results show that the Shanzuokou-Sihong fault is a Late Pleistocene active fault on the east side of the North Maling Mountain and a Middle Pleistocene fault in Xinyi City. Moreover, a Late Pleistocene-Early Holocene active fault has been discovered recently at the Zhangcang Primary School in Xinyi City (also known as the Zhangcang Primary School fault). With the intersection of this newly discovered fault and the Shanzuokou-Sihong fault (northeast of Zhangcang Village) as demarcation, the Shanzuokou-Sihong fault can be divided into northern and southern segments, which are a Late Pleistocene active fault and an Early-Middle Pleistocene fault, respectively. Since the Late Pleistocene, the northern segment has extended southward to the Zhangcang Primary School fault due to fault activity. The North Maling Mountain is a bedrock massif within the Tan-Lu fault zone, distributed along the strike of the fault zone. Its continuous uplift since the Quaternary has a certain coupling relationship with the activity variations of the Shanzuokou-Sihong fault. This study will provide a valuable reference for understanding both the activity variations of other branch faults and the formation mechanism of hills and mountains in the Tancheng-Lujiang fault zone.
Keywords
Tancheng-Lujiang fault zone, Shanzuokou-Sihong fault, activity, shallow seismic exploration, cross-well stratigraphic correlation, Beimaling mountains
DOI
10.12363/issn.1001-1986.23.10.0626
Recommended Citation
ZHANG Hao, LI Wei, LI Limei,
et al.
(2023)
"Activity variations of the Shanzuokou-Sihong fault within the Jiangsu segment of the Tancheng-Lujiang fault zone and their origins,"
Coal Geology & Exploration: Vol. 51:
Iss.
12, Article 4.
DOI: 10.12363/issn.1001-1986.23.10.0626
Available at:
https://cge.researchcommons.org/journal/vol51/iss12/4
Reference
[1] 方仲景,丁梦林,向宏发,等. 郯庐断裂带的基本特征[J]. 科学通报,1986,31(1):52−55.
FANG Zhongjing,DING Menglin,XIANG Hongfa,et al. Basal characteristics of Tanlu fault zone[J]. Chinese Science Bulletin,1986,31(1):52−55.
[2] 王小凤,李中坚,陈柏林,等. 郯庐断裂带[M]. 北京:地质出版社,2000.
[3] 顾功叙. 中国地震目录[M]. 北京:科学出版社,1993.
[4] 张继红,赵国泽,肖骑彬,等. 郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境[J]. 地球物理学报,2010,53(3):605−611.
ZHANG Jihong,ZHAO Guoze,XIAO Qibin,et al. Analysis of electric structure of the central Tanlu fault zone (Yishu fault zone,36°N) and seismogenic condition[J]. Chinese Journal of Geophysics,2010,53(3):605−611.
[5] 翁爱华,李建平,范小平,等. 大地电磁测深揭示的1668年郯城8. 5级地震震中地壳精细结构[J]. 地震地质,2018,40(2):396–409.
WENG Aihua,LI Jianping,FAN Xiaoping,et al. Fine electrical structure beneath the epicenter of 1668 Tancheng Ms8.5 earthquake revealed by MT sounding[J]. Seismology and Geology,2018,40(2):396–409.
[6] 万天丰,朱鸿,赵磊,等. 郯庐断裂带的形成与演化:综述[J]. 现代地质,1996,10(2):159−168.
WAN Tianfeng,ZHU Hong,ZHAO Lei,et al. Formation and evolution of Tancheng–Lujiang fault zone:A review[J]. Geoscience,1996,10(2):159−168.
[7] 朱光,刘国生,牛漫兰,等. 郯庐断裂带的平移运动与成因[J]. 地质通报,2003,22(3):200−207.
ZHU Guang,LIU Guosheng,NIU Manlan,et al. Transcurrent movement and genesis of the Tanlu fault zone[J]. Geological Bulletin of China,2003,22(3):200−207.
[8] 刘保金,酆少英,姬计法,等. 郯庐断裂带中南段的岩石圈精细结构[J]. 地球物理学报,2015,58(5):1610−1621.
LIU Baojin,FENG Shaoying,JI Jifa,et al. Fine lithosphere structure beneath the middle–southern segment of the Tanlu fault zone[J]. Chinese Journal of Geophysics,2015,58(5):1610−1621.
[9] 谢瑞征,丁政,朱书俊,等. 郯庐断裂带江苏及邻区第四纪活动特征[J]. 地震学刊,1991(4):1−7.
XIE Ruizheng,DING Zheng,ZHU Shujun,et al. Active characteristics in the Jiangsu segment of the Tanlu fault zone and it’s vicinity[J]. Journal of Seismology,1991(4):1−7.
[10] 许汉刚,范小平,冉勇康,等. 郯庐断裂带宿迁段F5断裂浅层地震勘探新证据[J]. 地震地质,2016,38(1):31−43.
XU Hangang,FAN Xiaoping,RAN Yongkang,et al. New evidences of the Holocene fault in Suqian segment of the Tanlu fault zone discovered by shallow seismic exploration method[J]. Seismology and Geology,2016,38(1):31−43.
[11] 刘备,朱光,胡红雷,等. 郯庐断裂带江苏段新构造活动规律分析[J]. 地质学报,2015,89(8):1352−1366.
LIU Bei,ZHU Guang,HU Honglei,et al. Analysis on neotectonic activity of the Jiangsu part of the Tanlu fault zone[J]. Acta Geologica Sinica,2015,89(8):1352−1366.
[12] 曹筠,冉勇康,许汉刚,等. 郯庐断裂带江苏段东地堑边界断层第四纪活动性[J]. 中国地震,2018,34(3):387−399.
CAO Jun,RAN Yongkang,XU Hangang,et al. Quaternary activity of the boundary fault of eastern graben in the Jiangsu segment,the Tanlu fault zone[J]. Earthquake Research in China,2018,34(3):387−399.
[13] 徐建国,徐华,张涛,等. 沂沭断裂带北段东支断裂的浅部构造特征及活动性[J]. 地质学报,2019,93(4):776−790.
XU Jianguo,XU Hua,ZHANG Tao,et al. Shallow tectonic characteristics and activity of the east branch faults of the northern segment of the Yishu fault zone[J]. Acta Geologica Sinica,2019,93(4):776−790.
[14] 顾勤平,许汉刚,晏云翔,等. 郯庐断裂带新沂段地壳浅部结构和断裂活动性探测[J]. 地震地质,2020,42(4):825−843.
GU Qinping,XU Hangang,YAN Yunxiang,et al. The crustal shallow structures and fault activity detection in Xinyi section of Tanlu fault zone[J]. Seismology and Geology,2020,42(4):825−843.
[15] 晁洪太,李家灵,崔昭文,等. 郯庐断裂带中段全新世活断层的特征滑动行为与特征地震[J]. 内陆地震,1994,8(4):297−304.
CHAO Hongtai,LI Jialing,CUI Zhaowen,et al. Characteristic slip behavior of the Holocene fault in the central section of the Tanlu fault zone and the characteristic earthquakes[J]. Inland Earthquake,1994,8(4):297−304.
[16] 李家灵,晁洪太,崔昭文,等. 郯庐活断层的分段及其大震危险性分析[J]. 地震地质,1994,16(2):121−126.
LI Jialing,CHAO Hongtai,CUI Zhaowen,et al. Segmentation of active fault along the Tancheng–Lujiang fault zone and evaluation of strong earthquake risk[J]. Seismology and Geology,1994,16(2):121−126.
[17] 晁洪太,李家灵,崔昭文,等. 郯庐断裂带潍坊–嘉山段全新世活断层的活动方式与发震模式[J]. 地震研究,1997,20(2):218−226.
CHAO Hongtai,LI Jialing,CUI Zhaowen,et al. Mode of motion of the Holocene fault in Weifang–Jiashan segment of the Tanlu fault zone and earthquake–generating model[J]. Journal of Seismological Research,1997,20(2):218−226.
[18] 施炜,张岳桥,董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报,2003,24(1):11−18.
SHI Wei,ZHANG Yueqiao,DONG Shuwen. Quaternary activity and segmentation behavior of the middle portion of the Tanlu fault zone[J]. Acta Geoscientica Sinica,2003,24(1):11−18.
[19] 刘旭东,张世民,晏云翔,等. 基于浅层地震勘探与钻孔联合地质剖面探测的苏北盆地倪湖庄–七里墩断裂研究[J]. 震灾防御技术,2022,17(1):11−27.
LIU Xudong,ZHANG Shimin,YAN Yunxiang,et al. Nihuzhuang–Qilidun fault detecting based on shallow seismic exploration and drilling joint geological profile in Subei Basin[J]. Technology for Earthquake Disaster Prevention,2022,17(1):11−27.
[20] 雷启云,柴炽章,孟广魁,等. 隐伏活断层钻孔联合剖面对折定位方法[J]. 地震地质,2011,33(1):45−55.
LEI Qiyun,CHAI Chizhang,MENG Guangkui,et al. Method of locating buried active fault by composite drilling section doubling exploration[J]. Seismology and Geology,2011,33(1):45−55.
[21] 曹筠,冉勇康,许汉刚,等. 宿迁城市活动断层探测多方法技术运用的典型案例[J]. 地震地质,2015,37(2):430−439.
CAO Jun,RAN Yongkang,XU Hangang,et al. Typical case analysis on application of multi–method detection technique to active fault exploration in Suqian City[J]. Seismology and Geology,2015,37(2):430−439.
[22] ZHANG Hao,HE Zhongtai,XU Hangang,et al. Kinematic characteristics of the Jiangsu segment of the Anqiu–Juxian fault in the Tanlu fault zone,eastern China[J]. Lithosphere,2021,2021:6691692.
[23] 朱艾斓,徐锡伟,王鹏,等. 以精定位背景地震活动与震源机制解研究郯庐断裂带中南段现今活动习性[J]. 地学前缘,2018,25(1):218−226.
ZHU Ailan,XU Xiwei,WANG Peng,et al. The present activity of the central and southern segments of the Tancheng–Lujiang fault zone evidenced from relocated microseismicity and focal mechanisms[J]. Earth Science Frontiers,2018,25(1):218−226.
[24] 张浩,王金艳,许汉刚,等. 安丘–莒县断裂新沂段的几何结构特征[J]. 地震地质,2022,44(6):1448−1468.
ZHANG Hao,WANG Jinyan,XU Hangang,et al. Geometric structure characteristics of Xinyi segment of Anqiu–Juxian fault[J]. Seismology and Geology,2022,44(6):1448−1468.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons