Coal Geology & Exploration
Abstract
Fujian, located in the orogen region of the coastal areas of southeast China, exhibits well-developed structures and complex surface conditions, which make deep seismic reflection surveys challenging. In response to the diversity and complexity of seismogeological conditions in Fujian, this study optimized the seismic excitation means based on previous deep seismic surveys. Specifically, the combination of large, medium, and small guns was transitioned into the layout of normal guns (spacing of shot points: 600 m) and large shots (spacing of shot points: 15 km), leading to enhanced folds of large shots. Through simulation analysis, this study calculated the spacing of combined boreholes, aiming to concentrate the excitation energy and generate seismic elastic waves with the maximum efficiency. It optimized the dominant frequency of the nodal seismometers for data acquisition, reducing it from 10 Hz to 5 Hz to improve the resolution of data on the middle-deep crust in seismic records. Furthermore, this study increased the number of receiving channels from 1200 to 2400, achieving a maximum offset of 36 km. This value exceeds the depth of the Moho in Fujian, allowing for the acquisition of the reflection signals of deeper parts. After the optimization of the seismic acquisition parameters, the obtained original single-shot seismic records and initially stacked time sections featured high signal-to-noise ratios. The optimization also contributed to clear reflected waves of the middle-deep crust and the Moho, as well as high imaging accuracy of the crustal structure. As a result, the expected geological survey effects were achieved. The newly obtained data parameters can provide a reference for deep seismic reflection surveys in similar areas.
Keywords
complex terrain, deep seismic reflection, acquisition parameter, observation system, Moho, Fujian
DOI
10.12363/issn.1001-1986.23.10.0629
Recommended Citation
YAN Yunxiang, LI Pei, ZHI Min,
et al.
(2023)
"Optimization of data acquisition parameters for deep seismic reflection surveys in complex terrain,"
Coal Geology & Exploration: Vol. 51:
Iss.
12, Article 16.
DOI: 10.12363/issn.1001-1986.23.10.0629
Available at:
https://cge.researchcommons.org/journal/vol51/iss12/16
Reference
[1] 方盛明,张先康,刘保金,等. 城市活断层地震勘探的最佳组合方法与应用研究[J]. 地震地质,2006,28(4):646−654.
FANG Shengming,ZHANG Xiankang,LIU Baojin,et al. The best combination methods and applied research of seismic prospecting for active faults in urban area[J]. Seismology and Geology,2006,28(4):646−654.
[2] 王海燕,高锐,卢占武,等. 地球深部探测的先锋:深地震反射方法的发展与应用[J]. 勘探地球物理进展,2006,29(1):7−13.
WANG Haiyan,GAO Rui,LU Zhanwu,et al. Precursor of detecting the interior earth:Development and applications of deep seismic reflection[J]. Progress in Exploration Geophysics,2006,29(1):7−13.
[3] 王海燕,高锐,卢占武,等. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报,2010,84(6):818−839.
WANG Haiyan,GAO Rui,LU Zhanwu,et al. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile[J]. Acta Geologica Sinica,2010,84(6):818−839.
[4] 刘保金,胡平,孟勇奇,等. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报,2009,52(9):2264−2272.
LIU Baojin,HU Ping,MENG Yongqi,et al. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics (in Chinese),2009,52(9):2264−2272.
[5] 吕庆田,刘振东,董树文,等. “长江深断裂带”的构造性质:深地震反射证据[J]. 地球物理学报,2015,58(12):4344−4359.
LYU Qingtian,LIU Zhendong,DONG Shuwen,et al. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics (in Chinese),2015,58(12):4344−4359.
[6] 李秋生,彭苏萍,高锐. 青藏高原莫霍面的研究进展[J]. 地质论评,2004,50(6):598−612.
LI Qiusheng,PENG Suping,GAO Rui. A review on the Moho discontinuity beneath the Tibetan Plateau[J]. Geological Review,2004,50(6):598−612.
[7] ZHANG Zhongjie,WANG Yanghua. Crustal structure and contact relationship revealed from deep seismic sounding data in South China[J]. Physics of the Earth and Planetary Interiors,2007,165:114−126.
[8] 王椿镛,楼海,魏修成,等. 天山北缘的地壳结构和1906年玛纳斯地震的地震构造[J]. 地震学报,2001,23(5):460−470.
WANG Chunyong,LOU Hai,WEI Xiucheng,et al. Crustal structure in northern margin of Tianshan Mountains and seismotectonics of 1906 Manas Earthquake[J]. Acta Seismologica Sinica,2001,23(5):460−470.
[9] 董树文,李廷栋,高锐,等. 地球深部探测国际发展与我国现状综述[J]. 地质学报,2010,84(6):743−770.
DONG Shuwen,LI Tingdong,GAO Rui,et al. International progress in probing the earth’s lithosphere and deep interior:A review[J]. Acta Geologica Sinica,2010,84(6):743−770.
[10] 岳航羽,王小江,王磊,等. 陆地地区深地震反射剖面技术的研究现状与展望[J]. 煤田地质与勘探,2023,51(6):121−148.
YUE Hangyu,WANG Xiaojiang,WANG Lei,et al. Deep seismic reflection profiling technology in land areas:A review and prospects[J]. Coal Geology & Exploration,2023,51(6):121−148.
[11] 刘保金,沈军,张先康,等. 深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造[J]. 地球物理学报,2007,50(5):1464−1472.
LIU Baojin,SHEN Jun,ZHANG Xiankang,et al. The crust structures and tectonics of Urumqi depression revealed by deep seismic reflection profile in the northern margin of Tianshan Mountains[J]. Chinese Journal of Geophysics (in Chinese),2007,50(5):1464−1472.
[12] 李洪强,高锐,王海燕,等. 用近垂直方法提取莫霍面:以六盘山深地震反射剖面为例[J]. 地球物理学报,2013,56(11):3811−3818.
LI Hongqiang,GAO Rui,WANG Haiyan,et al. Extracting the Moho structure of Liupanshan by the method of near vertical incidence[J]. Chinese Journal of Geophysics (in Chinese),2013,56(11):3811−3818.
[13] REDDY P R,RAO V V. Seismic images of the continental Moho of the Indian shield[J]. Tectonophysics,2013,609(8):217−233.
[14] 卢占武,高锐,李洪强,等. 深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化[J]. 中国地质,2016,43(5):1679−1687.
LU Zhanwu,GAO Rui,LI Hongqiang,et al. Crustal thickness variation from northern Lhasa terrane to southern Qiangtang terrane revealed by deep seismic reflection data[J]. Geology in China,2016,43(5):1679−1687.
[15] 任彦宗,卢占武,张新彦,等. 便携式节点地震仪数据采集和处理技术进展[J]. 地球物理学进展,2021,36(2):779−791.
REN Yanzong,LU Zhanwu,ZHANG Xinyan,et al. Progress in data acquisition and processing technology of portable node seismographs[J]. Progress in Geophysics,2021,36(2):779−791.
[16] 王光文,卢占武,李文辉,等. 深地震反射剖面探测技术发展现状[J]. 地球与行星物理论评(中英文),2023,54(2):120−139.
WANG Guangwen,LU Zhanwu,LI Wenhui,et al. Development status of deep seismic reflection profile detection technology[J]. Reviews of Geophysics and Planetary Physics,2023,54(2):120−139.
[17] 朱金芳,徐锡伟,张先康,等. 福州盆地及邻区地壳精细结构的深地震反射与高分辨率折射及宽角反射/折射联合探测研究[J]. 中国科学D辑:地球科学,2005,35(8):738−749.
ZHU Jinfang,XU Xiwei,ZHANG Xiankang,et al. Research on deep seismic reflection,high resolution refraction,and wide angle reflection/refraction joint detection of crustal fine structure in Fuzhou Basin and adjacent areas[J]. Science in China (Series D):Earth Sciences,2005,35(8):738−749.
[18] 李培,金星,王善雄,等. 福建邵武–南平–平潭深地震测深剖面的地壳速度结构及其构造意义[J]. 中国科学:地球科学,2015,45(11):1757−1767.
LI Pei,JIN Xing,WANG Shanxiong,et al. Crustal velocity structure of the Shaowu–Nanping–Pingtan transect through Fujian from deep seismic sounding–tectonic implications[J]. Science China:Earth Sciences,2015,45(11):1757−1767.
[19] 李培,蔡辉腾,金星,等. 中国大陆东南缘主要构造带基底结构[J]. 地球物理学报,2019,62(8):2991−3003.
LI Pei,CAI Huiteng,JIN Xing,et al. Basement structure beneath the southeastern margin in Chinese continent[J]. Chinese Journal of Geophysics (in Chinese),2019,62(8):2991−3003.
[20] 蔡辉腾,金星,王善雄. 福建地区地壳上地幔速度结构研究进展[J]. 地球物理学进展,2014,29(4):1485−1490.
CAI Huiteng,JIN Xing,WANG Shanxiong. The research progress of velocity structure of crust and upper mantle in Fujian area[J]. Progress in Geophysics,2014,29(4):1485−1490.
[21] 蔡辉腾,金星,王善雄,等. 宁化–大田–惠安地壳构造与速度结构特征[J]. 地球物理学报,2016,59(1):157−168.
CAI Huiteng,JIN Xing,WANG Shanxiong,et al. The crust structure and velocity structure characteristics beneath Ninghua–Datian–Hui’an[J]. Chinese Journal of Geophysics (in Chinese),2016,59(1):157−168.
[22] 林吉焱,唐国彬,徐涛,等. 钦杭–武夷山成矿带上地壳速度结构与基底特征:万载–惠安宽角反射/折射地震剖面约束[J]. 地球物理学报,2020,63(12):4396−4409.
LIN Jiyan,TANG Guobin,XU Tao,et al. P–wave velocity structure in upper crust and crystalline basement of the Qinhang and Wuyishan Metallogenic belts:Constraint from the Wanzai–Hui’an deep seismic sounding profile[J]. Chinese Journal of Geophysics (in Chinese),2020,63(12):4396−4409.
[23] 卢占武,高锐,王海燕,等. Sinoprobe–02 华南深地震反射剖面(湖南邵阳–福建漳浦)采集实验[C]//中国地球物理学会. 中国地球物理2012. 合肥:中国科技大学出版社,2012:81.
[24] 王海燕,高锐,匡朝阳,等. 华南深地震反射剖面联线关键处理成像技术与效果分析[J]. 桂林理工大学学报,2018,38(2):222−229.
WANG Haiyan,GAO Rui,KUANG Chaoyang,et al. Image processing technology and effect analysis of deep seismic reflection profile across South China[J]. Journal of Guilin University of Technology,2018,38(2):222−229.
[25] DONG Shuwen,LI Jianhua,CAWOOD P A,et al. Mantle influx compensates crustal thinning beneath the Cathaysia Block,South China:Evidence from SINOPROBE reflection profiling[J]. Earth and Planetary Science Letters,2020,544:116360.
[26] FINETTI I R,BOCCALETTI M,BONINI M,et al. Crustal section based on CROP seismic data across the North Tyrrhenian–Northern Apennines–Adriatic Sea[J]. Tectonophysics,2001,343:135−163.
[27] FINETTI I R. Innovative CROP seismic highlights on the Mediterranean region[J]. Special Volume of the Italian Geological Society for the IGC 32 Florence,2004:131–141.
[28] 酆少英,李秋生,邓小娟,等. 深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J]. 地球物理学报,2020,63(3):828−839.
FENG Shaoying,LI Qiusheng,DENG Xiaojuan,et al. Crustal skeleton structure of the lateral collision zone of the Qinghai–Tibet Plateau revealed by large–shot set of deep–reflecting profiling[J]. Chinese Journal of Geophysics (in Chinese),2020,63(3):828−839.
[29] 姚强,杨兴国,陈兴泽,等. 大型地下厂房开挖爆破振动动力响应数值模拟[J]. 振动与冲击,2014,33(6):66−70.
YAO Qiang,YANG Xingguo,CHEN Xingze,et al. Numerical simulation of dynamic response of large underground powerhouse subjected to blasting vibration[J]. Journal of Vibration and Shock,2014,33(6):66−70.
[30] 张西良,汪禹,崔正荣,等. 深部围压对岩体爆破损伤范围影响数值分析[J]. 爆破,2018,35(2):56−60.
ZHANG Xiliang,WANG Yu,CUI Zhengrong,et al. Numerical analysis on influence of deep confining pressure on blasting damage range of rock mass[J]. Blasting,2018,35(2):56−60.
[31] 崔正荣,汪禹,仪海豹,等. 深部高地应力条件下双孔爆破岩体损伤数值模拟及试验研究[J]. 爆破,2019,36(2):59−64.
CUI Zhengrong,WANG Yu,YI Haibao,et al. Numerical simulation and experimental study of rock mass damage caused by double–hole blasting deep in–situ stress conditions[J]. Blasting,2019,36(2):59−64.
[32] 袁英杰,孙惠香,陈卓. 爆炸荷载下泡沫混凝土减振层动力响应分析[J]. 工程爆破,2021,27(4):51−57.
YUAN Yingjie,SUN Huixiang,CHEN Zhuo. Analysis of dynamic response of foam concrete damping layer under explosive load[J]. Engineering Blasting,2021,27(4):51−57.
[33] 高锐,李秋生,赵越,等. 燕山造山带深地震反射剖面启动探测研究[J]. 地质通报,2002,21(12):905−906.
GAO Rui,LI Qiusheng,ZHAO Yue,et al. Research on starting detection of deep seismic reflection profile in the Yanshan orogenic belt[J]. Geological Bulletin of China,2002,21(12):905−906.
[34] BAO Feng,LI Zhiwei,TIAN Baofeng,et al. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. Journal of Asian Earth Sciences,2019,185:104045.
[35] LIU Zhen,TIAN Xiaobo,GAO Rui,et al. New images of the crustal structure beneath eastern Tibet from a high–density seismic array[J]. Earth and Planetary Science Letters,2017,480:33−41.
[36] ROUX P,MOREAU L,LECOINTRE A,et al. A methodological approach toward high–resolution surface wave imaging of the San Jacinto fault zone using ambient–noise recordings at a spatially dense array[J]. Geophysical Journal International,2016,206(2):980−992.
[37] WANG Gaochun,TIAN Xiaobo,GUO Lianglei,et al. High–resolution crustal velocity imaging using ambient noise recordings from a high–density seismic array:An example from the Shangrao section of the Xinjiang Basin,China[J]. Earthquake Science,2018,31(5/6):242,251,.
[38] 顾汉明,梁国胜,刘厚顺,等. 用多次波压制模拟确定观测系统设计参数[J]. 石油物探,2001,40(4):43−48.
GU Hanming,LIANG Guosheng,LIU Houshun,et al. The determination of parameters of layout system by multiple suppression simulation[J]. Geophysical Prospecting for Petroleum,2001,40(4):43−48.
[39] 韩志雄,陈敬国,王昆,等. 滨里海M区块深层地震采集参数优化及效果[J]. 石油物探,2021,60(6):915−924.
HAN Zhixiong,CHEN Jingguo,WANG Kun,et al. Parameter optimization for a deep target in block M in the Pre–Caspian Basin[J]. Geophysical Prospecting for Petroleum,2021,60(6):915−924.
[40] 张辉,刘志伟,贺日政,等. 利用深反射地震数据构建的多阶面波频散曲线反演近地表横波速度结构:以跨班公湖–怒江缝合带深反射地震资料为例[J]. 地球物理学报,2020,63(12):4410−4430.
ZHANG Hui,LIU Zhiwei,HE Rizheng,et al. Near surface shear wave velocity structure inversion using multi–order surface wave dispersion curves constructed from deep seismic reflection data:A real case of deep seismic reflection profile across Bangong–Nujiang suture zone[J]. Chinese Journal of Geophysics (in Chinese),2020,63(12):4410−4430.
[41] 程建远,王千遥,朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探,2020,48(6):25−32.
CHENG Jianyuan,WANG Qianyao,ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):25−32.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons