Coal Geology & Exploration
Abstract
To investigate the hydrogeological conditions of the thick Luohe Formation in Ordos Basin and quantitatively evaluate vertical variation characteristics of its aquifer’ s water-rich, proposes the method of using the coefficient of transmissibility to evaluate the water-rich of the aquifer, and give the seven level classification standard of water-rich by the method of determining coefficient of transmissibility. The double-packer system was used to carry out the pumping tests of 10 vertical sections of fixed thickness of the Luohe Formation in the DJ1 and DJ2 boreholes in the Gaojiabao mine field, shaanxi, and the hydrogeological parameters were calculated. Using the comprehensive water-rich index method to stratify the Luohe Formation vertically and analyze its hydrogeological characteristics vertically. The results show that: (1) The water-rich standards of coefficient of transmissibility are given; when T≤1 m2/d, 1 m2/d<T≤10 m2/d, 10 m2/d<T≤50 m2/d, 50 m2/d<T≤100 m2/d, 100 m2/d<T≤200 m2/d, 200 m2/d<T≤400 m2/d and T>400 m2/d, the water-rich is very weak, weak, medium, strong, very strong, especially strong, and extremely strong. (2) The Luohe Formation is vertically divided into four aquifers including the upper, middle-upper, middle-lower and lower aquifers by the comprehensive water-rich index method. (3) The Luohe Formation vertical hydrogeological characteristics are different. The middle-upper and middle-lower formation are the main aquifers, which are dominated by sandstone strata and relatively thick (122.20-124.30 m and 113.30-148.70 m, respectively), the permeability coefficient K (0.598 9-0.708 5 m/d and 0.111 5-0.211 5 m/d, respectively) and coefficient of transmissibility T (65.60-116.94 m2/d and 11.05-30.89 m2/d, respectively) have relatively large values, and the water-rich are from medium to very strong; The upper and lower formation are the secondary aquifers, which are dominated by sand-mudstone strata and relatively small (20.45-35.20 m and 57.60-91.19 m, respectively), the permeability coefficient K (0.064 6 m/d and 0.005 1-0.009 0 m/d, respectively) and coefficient of transmissibility T (1.58 m2/d and 0.34-0.66 m2/d, respectively) have relatively small values, and the water-rich are from very weak to weak. (4) The coefficient of transmissibility has a definite calculation relationship among multiple aquifers. The coefficient of transmissibility method is used to evaluate the vertical water-rich of the Luohe Formation, and there are significant differences. Therefore, the application was successful.
Keywords
Luohe Formation, water-rich, layered pumping test, coefficient of transmissibility, specific capacity
DOI
10.12363/issn.1001-1986.22.03.0168
Recommended Citation
LI Chaofeng, LIU Yexian, ZHANG Jinkui,
et al.
(2023)
"Vertical variability of hydrogeological characteristics of Luohe Formation by double packer system pumping test,"
Coal Geology & Exploration: Vol. 51:
Iss.
11, Article 7.
DOI: 10.12363/issn.1001-1986.22.03.0168
Available at:
https://cge.researchcommons.org/journal/vol51/iss11/7
Reference
[1] 侯光才,林学钰,苏小四,等. 鄂尔多斯白垩系盆地地下水系统研究[J]. 吉林大学学报(地球科学版),2006,36(3):391−398.
HOU Guangcai,LIN Xueyu,SU Xiaosi,et al. Groundwater system in Ordos Cretaceous Artisan Basin (CAB)[J]. Journal of Jilin University (Earth Science Edition),2006,36(3):391−398.
[2] 李云峰,冯建国,王玮,等. 鄂尔多斯盆地白垩系含水层系统分析[J]. 西北地质,2004,37(1):90−96.
LI Yunfeng,FENG Jianguo,WANG Wei,et al. The groundwater system analysis of Cretaceous system of Ordos Basin[J]. Northwestern Geology,2004,37(1):90−96.
[3] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.
DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
[4] 刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431−435.
LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic Coalfield[J]. Journal of Xi’an University of Science and Technology,2013,33(4):431−435.
[5] 杨国栋. 永陇矿区麟北郭家河煤矿离层水形成典型地质条件与防治关键技术研究[D]. 西安:西安科技大学,2019.
YANG Guodong. Study on typical geological conditions and key prevention technologies for separated water in Guojiahe Coal Mine[D]. Xi’an:Xi’an University of Science and Technology,2019.
[6] 乔伟,王志文,李文平,等. 煤矿顶板离层水害形成机制、致灾机理及防治技术[J]. 煤炭学报,2021,46(2):507−522.
QIAO Wei,WANG Zhiwen,LI Wenping,et al. Formation mechanism,disaster–causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society,2021,46(2):507−522.
[7] 张培森,朱慧聪,吴玉华,等. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报,2021,29(4):1057−1070.
ZHANG Peisen,ZHU Huicong,WU Yuhua,et al. State–of–the–art of mechanism of water inrush from bed separation and key technology of prevention and pre−control in China[J]. Journal of Engineering Geology,2021,29(4):1057−1070.
[8] 李超峰,虎维岳,刘英锋. 洛河组含水层垂向差异性研究及保水采煤意义[J]. 煤炭学报,2019,44(3):848−857.
LI Chaofeng,HU Weiyue,LIU Yingfeng. Vertical hydrogeological characteristics of Luohe aquifer and its significance of water−preserved coal mining[J]. Journal of China Coal Society,2019,44(3):848−857.
[9] 李超峰,虎维岳. 回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J]. 水文地质工程地质,2018,45(3):1−13.
LI Chaofeng,HU Weiyue. Prediction method of mine water inflow regime from a layered extra–thick aquifer[J]. Hydrogeology & Engineering Geology,2018,45(3):1−13.
[10] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384−392.
LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(Sup.1):384−392.
[11] 侯光才,张茂省,刘方,等. 鄂尔多斯盆地地下水勘查研究[M]. 北京:地质出版社,2008.
[12] 徐中华. 鄂尔多斯盆地南区保安群地下水水化学特征及演化机理[D]. 西安:长安大学,2010.
XU Zhonghua. Study on hydrochemical characteristic and evolution mechanism of Bao’ an group groundwater of the Ordos Cretaceous Artesian Basin south[D]. Xi’an:Chang’an University,2010.
[13] 杨郧城,侯光才,张茂省,等. 双Packer系统在鄂尔多斯盆地地下水勘查中的应用[J]. 西北地质,2005,38(1):113−115.
YANG Yuncheng,HOU Guangcai,ZHANG Maosheng,et al. Applications of double Packer system to exploration of the groundwater in Ordos Basin[J]. Northwestern Geology,2005,38(1):113−115.
[14] 马思锦,汤献敏. Packer系统在地下水勘查中的应用[J]. 陕西地质,2009,27(2):75−82.
MA Sijin,TANG Xianmin. Application of Packer system on exploration of groundwater[J]. Geology of Shaanxi,2009,27(2):75−82.
[15] 刘英锋,李超峰. 陕西彬长胡家河矿业有限公司矿井首采区水文地质补充勘探报告[R]. 西安:中煤科工集团西安研究院有限公司,2014.
[16] 李超峰. 彬长矿区巨厚洛河组垂向差异性研究[J]. 煤炭技术,2018,37(4):131−133.
LI Chaofeng. Vertical differences of thick Luohe Formation in Binchang mining area[J]. Coal Technology,2018,37(4):131−133.
[17] 李超峰. 采煤工作面顶板巨厚层状含水层涌水量预测研究[D]. 北京:煤炭科学研究总院,2019.
LI Chaofeng. Prediction theory and method of water inflow from roof thick layered aquifer of coal mining face[D]. Beijing:China Coal Research Institute,2019.
[18] 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版),2021,51(6):1801−1810.
LI Chaofeng. Hydraulic connection coefficient and quantitative evaluation of hydraulic connection between aquifers[J]. Journal of Jilin University (Earth Science Edition),2021,51(6):1801−1810.
[19] 李超峰,姬亚东. 揭露两个含水层混合井初始混合水位形成机理研究[J]. 地下水,2021,43(4):25−28.
LI Chaofeng,JI Yadong. Formation mechanism of initial water level in a mixed well of two aquifers[J]. Groundwater,2021,43(4):25−28.
[20] 纪传豪. 对岩层含水性图编制原则的几点意见[J]. 水文地质工程地质,1959(3):14−15.
JI Zhuanhao. Opinions on the principles for compiling water–rich maps of formations[J]. Hydrogeology & Engineering Geology,1959(3):14−15.
[21] 沈树荣. 读“对岩层含水性图编制原则的几点意见”[J]. 水文地质工程地质,1959(10):24−27.
SHEN Shurong. Read “Opinions on the principles for compiling water–rich maps of formations”[J]. Hydrogeology & Engineering Geology,1959(10):24−27.
[22] 国家技术监督局. 矿区水文地质工程地质勘探规范:GB 12719—1991[S]. 北京:中国标准出版社,1991.
[23] 国家安全生产监督管理总局,国家煤矿安全监察局. 煤矿防治水规定[M]. 北京:煤炭工业出版社,2009.
[24] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
[25] 李超峰. 基于导水系数的含水层富水性评价方法[J]. 地下水,2023,45(5):15−17.
LI Chaofeng. Evaluation method of water–rich of aquifers based on transmissivity[J]. Groundwater,2023,45(5):15−17.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons