Coal Geology & Exploration
Abstract
In order to investigate the influence mechanism of freeze-thaw cycles on the structure and mechanical properties of soil, the typical clay soil in the inner dump of Yuanbaoshan open-pit coal mine in Inner Mongolia was taken as the research object, and the simulation analysis of the internal temperature, moisture and stress fields of the soil was carried out through laboratory freeze-thaw cycle tests and MatDEM numerical simulation. The results show that: freeze-shrinkage occurs to the soil in the dump after the freeze-thaw cycles, and the stress-strain curve shows the trend of strain softening at low confining pressure for shear failure, and the trend of strain hardening at the increased confining pressure for dilative failure. The deterioration of shear strength was most significantly affected by the first three freeze-thaw cycles, and reached the lowest value in the third cycle. The temperature transfer process can be divided into four stages: rapid temperature drop, slow phase transition, continuous cooling and temperature stabilization. Moisture migration mainly occurs in the first two stages of temperature transfer, with more in the second stage. The overall radius of the particles decreases and the dispersion increases after freeze-thaw. The expansion and contraction of particles caused by temperature transfer and moisture migration, the ice-water phase transition and the formation of cryostructures lead to the repeated changes in particle size, position, connection state and interparticle stress, which together drive the irreversible structural damage to the soil, resulting in strength deterioration. Moisture migration not only provides water conditions for the formation of cryostructures, but also produces dissolution and erosion damage to them, which together with the phase transition of moisture is the main reasons for the structural adjustment and stress field change of soil under the action of freeze-thaw cycle. The simulation of freeze-thaw cycle by discrete element method is helpful to understand the mechanical properties and strength degradation mechanism of soil, and provides a reference for the stability study of dump slopes and other engineering constructions in open-pit coal mine in frozen areas.
Keywords
open-pit coal mine, freeze-thaw cycle, MatDEM, temperature transfer, moisture migration, strength deterioration
DOI
10.12363/issn.1001-1986.23.04.0210
Recommended Citation
ZHANG Heyong, WANG Xuedong, ZHU Yongdong,
et al.
(2023)
"Mechanical properties and strength deterioration mechanism of soil in inner dump of open-pit coal mine under the action of freeze-thaw cycles,"
Coal Geology & Exploration: Vol. 51:
Iss.
11, Article 14.
DOI: 10.12363/issn.1001-1986.23.04.0210
Available at:
https://cge.researchcommons.org/journal/vol51/iss11/14
Reference
[1] 吕刚,李叶鑫,宁宝宽,等. 暴雨作用下排土场平台–边坡系统土壤侵蚀过程模拟研究[J]. 煤炭学报,2021,46(5):1463−1476.
LYU Gang,LI Yexin,NING Baokuan,et al. Soil erosionprocess of platform–slope system of dump under heavy rain[J]. Journal of China Coal Society,2021,46(5):1463−1476.
[2] 王晓东,徐拴海,张卫东,等. 高海拔多年冻土区露采矿山边坡水冰环境特征分析[J]. 煤田地质与勘探,2018,46(2):97−104.
WANG Xiaodong,XU Shuanhai,ZHANG Weidong,et al. Water and ice environments of open pit slope in high altitude area[J]. Coal Geology & Exploration,2018,46(2):97−104.
[3] 刘寒冰,张互助,王静. 冻融及含水率对压实黏质土力学性质的影响[J]. 岩土力学,2018,39(1):158−164.
LIU Hanbing,ZHANG Huzhu,WANG Jing. Effect of freeze–thaw and water content on mechanical properties of compacted clayey soil[J]. Rock and Soil Mechanics,2018,39(1):158−164.
[4] 龙建辉,张玲玲,邢鲜丽,等. 基于温度路径的冻融作用下黄土强度及微观结构研究[J]. 煤田地质与勘探,2021,49(4):242−249.
LONG Jianhui,ZHANG Lingling,XING Xianli,et al. Study on the strength and microstructure of loess under freeze–thaw based on temperature path[J]. Coal Geology & Exploration,2021,49(4):242−249.
[5] 王大雁,马巍,常小晓,等. 冻融循环作用对青藏粘土物理力学性质的影响[J]. 岩石力学与工程学报,2005,24(23):4313−4319.
WANG Dayan,MA Wei,CHANG Xiaoxiao,et al. Physico–mechanical properties changes of Qinghai–Tibet clay due to cyclic freezing and thawing[J]. Chinese Journal of RockMechanics and Engineering,2005,24(23):4313−4319.
[6] 常丹,刘建坤,李旭. 冻融循环下粉砂土屈服及强度特性的试验研究[J]. 岩石力学与工程学报,2015,34(8):1721−1728.
CHANG Dan,LIU Jiankun,LI Xu. Experimental study on yielding and strength properies of silty sand under freezing–thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1721−1728.
[7] 严晗,刘建坤,王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报,2013,37(4):73−77.
YAN Han,LIU Jiankun,WANG Tianliang. Experimental research of influences of freeze–thaw on the mechanical properties of silty soil[J]. Journal of Beijing Jiaotong University,2013,37(4):73−77.
[8] LIU Kuan,YE Wanjun,JING Hongjun. Shear strength and microstructure of intact loess subjected to freeze–thaw cycling[J]. Advances in Materials Science and Engineering,2021,2021:1173603.
[9] 李楠,王天亮,徐昌,等. 反复冻融作用下粉质黏土的微观分形特征研究[J]. 铁道标准设计,2017,61(10):48−52.
LI Nan,WANG Tianliang,XU Chang,et al. Study on the microcosmic fractal characteristics of silty clay subject to repeated freezing and thawing[J]. Railway Standard Design,2017,61(10):48−52.
[10] 柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96−105.
CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressiveproperties and microstructure of saline soil added fiber and lime under freezing–thawing cycles[J]. Hydrogeology and Engineering Geology,2022,49(5):96−105.
[11] MU Shen,LADANYI B. Modelling of coupled heat,moisture and stress field in freezing soil[J]. Cold Regions Science and Technology,1987,14(3):237−246.
[12] GATMIRI B,DELAGE P. A formulation of fully coupled thermal−hydraulic−mechanical behaviour of saturated porous media–numerical approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(3):199−225.
[13] 何敏,冯孝鹏,李宁,等. 饱和正冻土水热力耦合模型的改进[J]. 岩土工程学报,2018,40(7):1212−1220.
HE Min,FENG Xiaopeng,LI Ning,et al. Improvementof coupled thermo–hydro–mechanical model for saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering,2018,40(7):1212−1220.
[14] 刘恩龙,尹霄,张冲,等. 冻融作用下非饱和土热水力耦合数值模拟[J]. 防灾减灾工程学报,2022,42(5):953−960.
LIU Enlong,YIN Xiao,ZHANG Chong,et al. Numerical simulation of thermo–hydro–mechanical coupling for unsaturated soil subjected to freezing–thawing actions[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(5):953−960.
[15] 桑宏伟,张丹,刘春,等. 基于离散元法的能源管传热过程模拟[J]. 防灾减灾工程学报,2019,39(4):645−650.
SANG Hongwei,ZHANG Dan,LIU Chun,et al. Numerical simulation on heat transfer of energy PHC pile based ondiscrete element method[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):645−650.
[16] 尹楠,李双洋,裴万胜,等. 冻结黏土三轴试验微观变形机理的离散元分析[J]. 冰川冻土,2016,38(1):178−185.
YIN Nan,LI Shuangyang,PEI Wansheng,et al. Microscopic deformation mechanisms of triaxial test of frozen clay analyzed by discrete element method[J]. Journal of Glaciology and Geocryology,2016,38(1):178−185.
[17] LE Tiancheng,LIU Chun,TANG Chaosheng,et al. Numerical simulation of desiccation cracking in clayey soil using a multifield coupling discrete–element model[J]. Journal of Geotechnical and Geoenvironmental Engineering,2022,148(2):04021183.
[18] 中华人民共和国水利部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019.
[19] 何浩松,滕继东,张升,等. 试论冻害敏感性的合理性[J]. 岩土工程学报,2022,44(2):224−234.
HE Haosong,TENG Jidong,ZHANG Sheng,et al. Rationality of frost susceptibility of soils[J]. Chinese Journal of Geotechnical Engineering,2022,44(2):224−234.
[20] 张勇敢,鲁洋,刘斯宏,等. 冻融循环对掺砾黏土体积变化和力学特性影响的试验研究[J]. 岩石力学与工程学报,2021,40(增刊2):3323−3333.
ZHANG Yonggan,LU Yang,LIU Sihong,et al. Effects of cyclic freezing and thawing on volume changes and mechanical properties of clay–gravel mixtures[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup.2):3323−3333.
[21] 王雪冬,李世宇,孙延峰,等. 冻融循环作用对露天矿排土场土料土水特征的影响[J]. 煤田地质与勘探,2019,47(5):138−143.
WANG Xuedong,LI Shiyu,SUN Yanfeng,et al. Influence of the freezing–thawing cycles on soil–water characteristics of soil in open–pit mine dumping sites[J]. Coal Geology & Exploration,2019,47(5):138−143.
[22] 胡田飞,刘建坤,房建宏,等. 冻融循环下冷却温度对粉质黏土力学性质影响的试验研究[J]. 岩石力学与工程学报,2017,36(7):1757−1767.
HU Tianfei,LIU Jiankun,FANG Jianhong,et al. Experimental study on the effect of cyclic freezing−thawing on mechanical properties of silty clay under different cooling temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1757−1767.
[23] 张晓宇,许强,刘春,等. 黏性土失水开裂多场耦合离散元数值模拟[J]. 工程地质学报,2017,25(6):1430−1437.
ZHANG Xiaoyu,XU Qiang,LIU Chun,et al. Numerical simulation of drying cracking using multifield coupling discrete element method[J]. Journal of Engineering Geology,2017,25(6):1430−1437.
[24] 胡田飞,刘建坤,房建宏,等. 冻融循环下含水率对粉质黏土力学性质影响试验[J]. 哈尔滨工业大学学报,2017,49(12):123−130.
HU Tianfei,LIU Jiankun,FANG Jianhong,et al. Experimental study on the effect of moisture content on mechanical properties of' silty clay subjected to freeze–thaw cycling[J]. Journal of Harbin Institute of Technology,2017,49(12):123−130.
[25] 宋二祥,仝睿,罗爽,等. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学,2019,36(8):30−39.
SONG Erxiang,TONG Rui,LUO Shuang,et al. Numerical simulation and analysis of“time–varying canopy effect”of moisture transport in subgrade soil[J]. Engineering Mechanics,2019,36(8):30−39.
[26] 李洪升,刘增利,梁承姬. 冻土水热力耦合作用的数学模型及数值模拟[J]. 力学学报,2001,33(5):621−629.
LI Hongsheng,LIU Zengli,LIANG Chengji. Mathematical model for coupled moisture,heat and stress field and numerical simulation of frozen soil[J]. Chinese Journal of Theoretical and Applied Mechanics,2001,33(5):621−629.
[27] 白青波,李旭,田亚护,等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报,2015,37(增刊2):131−136.
BAI Qingbo,LI Xu,TIAN Yahu,et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering,2015,37(Sup.2):131−136.
[28] 王协群,周琪,韩仲,等. 常温脱湿与冻融路径下压实土的土水特征[J]. 中南大学学报(自然科学版),2021,52(10):3559−3570.
WANG Xiequn,ZHOU Qi,HAN Zhong,et al. Soil–water characteristics of compacted soils during drying at room temperature and in freezing−thawing[J]. Journal of Central South University(Science and Technology),2021,52(10):3559−3570.
[29] 徐斅祖,王家澄,张立新. 冻土物理学[M]. 北京:科学出版社,2010.
[30] 彭小丽. 寒区水工隧洞水热力耦合数值分析及衬砌结构稳定研究[D]. 石河子:石河子大学,2021.
PENG Xiaoli. Research on numerical analysis of thermal−hydro−mechanical coupling and stability of lining structure for hydraulic tunnel in cold region[D]. Shihezi:Shihezi University,2021.
[31] LIU Chun,POLLARD D D,SHI Bin. Analytical solutions and numerical tests of elastic and failure behaviors of close–packed lattice for brittle rocks and crystals[J]. Journal of Geophysical Research:Solid Earth,2013,118(1):71−82.
[32] 刘春,施斌,顾凯,等. 岩土体大型三维离散元模拟系统的研发与应用[J]. 工程地质学报,2014,22(增刊1):551−557.
LIU Chun,SHI Bin,GU Kai,et al. Development and application of large–scale discrete element simulation system for rock and soil[J]. Journal of Engineering Geology,2014,22(Sup.1):551−557.
[33] 张莲海,马巍,杨成松,等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土,2013,35(6):1505−1518.
ZHANG Lianhai,MA Wei,YANG Chengsong,et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology,2013,35(6):1505−1518.
[34] 魏厚振,周家作,韦昌富,等. 饱和粉土冻结过程中的水分迁移试验研究[J]. 岩土力学,2016,37(9):2547−2552.
WEI Houzhen,ZHOU Jiazuo,WEI Changfu,et al. Experimental study of water migration in saturated freezing silty soil[J]. Rock and Soil Mechanics,2016,37(9):2547−2552.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons