•  
  •  
 

Coal Geology & Exploration

Abstract

Similar simulation of physical material is a common research method in the field of geotechnical engineering. Selecting appropriate similar materials and determining their proportions is the key to successfully simulating the prototype project. Existing similar materials are mostly developed for similar simulation with small geometric similarity ratio (1∶250-1∶25). These materials generally have low strength (0.2-7.6 MPa), making it difficult to meet the requirements of large similarity ratio model. Therefore, in order to prepare an ultra-high strength similar material with a strength of more than 10 MPa suitable for large similarity ratio model, river sand, barite, gypsum, and cement with different strength grades were selected as the raw materials to prepare the similar materials for model test. A total of 25 different material proportioning schemes were designed with aggregate binder ratio, cement gypsum ratio, barite content, and cement strength grade as the four factors of orthogonal test. Various types of similar simulation specimens were prepared according to the test requirements, and corresponding rock mechanics tests were carried out to obtain the basic physical and mechanical parameters of similar materials with different proportions. The results show that the mechanical parameter variation range of similar materials obtained from the test is relatively large, with compressive strength ranged from 3.017 to 48.179 MPa, which can meet the requirements of ultra-high strength similar simulation under large similarity ratios. By analyzing the sensitivity and influencing law of each factor on the physical and mechanical parameters through intuitive analysis method, it is found that the barite content mainly controls the density of similar materials, the aggregate binder ratio mainly controls the compressive strength, tensile strength, elastic modulus and internal friction angle of similar materials, and the cement gypsum ratio mainly controls the cohesion of similar materials. Using SPSS software to perform regression analysis on the orthogonal experimental results of similar material proportioning, an empirical formula for the proportioning of ultra-high strength similar material was obtained and applied in projects. The formula could provide a theoretical basis for quickly determining the proportioning of cement gypsum sand similar materials.

Keywords

similar simulation, ultra-high strength similar material, orthogonal experiment, material proportioning, controlling factor, regression analysis

DOI

10.12363/issn.1001-1986.23.05.0237

Reference

[1] 张强勇,李术才,焦玉勇. 岩体数值分析方法与地质力学模型试验原理及工程应用[M]. 北京:中国水利水电出版社,2005.

[2] 高杰,张少华. 浅析矿山物理材料相似模拟实验的发展与展望[J]. 矿业研究与开发,2017,37(7):73−78.

GAO Jie,ZHANG Shaohua. Development and prospect on the similarity simulation experiment of mine physical materials[J]. Mining Research and Development,2017,37(7):73−78.

[3] 肖杰. 相似材料模型试验原料选择及配比试验研究[D]. 北京:北京交通大学,2013.

XIAO Jie. Selection of similar materials for model test & research on similar material proportioning test[D]. Beijing:Beijing Jiaotong University,2013.

[4] 顾大钊. 相似材料和相似模型[M]. 徐州:中国矿业大学出版社,1995.

[5] 顾大钊. 模拟岩石机械破碎的相似材料的选择及其配比[J]. 中国矿业学院学报,1988(3):33−37.

GU Dazhao. A study of analogous materials for simulating mechanical rock breaking and the proportion of their components[J]. Journal of China University of Mining & Technology,1988(3):33−37.

[6] FUMAGALLI E. Statical and geomechanical model[M]. New York:Springer,1973.

[7] 付晓敏,邓荣贵. 室内岩石力学试验[M]. 成都:西南交通大学出版社,2012.

[8] 白占平,曹兰柱,白润才. 相似材料配比的正交试验研究[J]. 露天采煤技术,1996(3):22−23.

BAI Zhanping,CAO Lanzhu,BAI Runcai. Orthogonal experimental study of similar material ratio[J]. Opencast Mining Technology,1996(3):22−23.

[9] KIM S H,BURD H J,MILLIGAN G W E. Model testing of closely spaced tunnels in clay[J]. Geotechnique,1998,48(3):375−388.

[10] 王其洲,叶海旺,李宁,等. 煤系软岩相似模拟材料配比实验及其强度变化规律[J]. 实验技术与管理,2021,38(9):77−82.

WANG Qizhou,YE Haiwang,LI Ning,et al. Proportioning experiment and strength variation law of similar simulation materials for soft rock of coal measures[J]. Experimental Technology and Management,2021,38(9):77−82.

[11] 翟成,郑仰峰,余旭,等. 水力压裂模拟用煤岩体相似材料基础力学特性实验研究[J]. 煤田地质与勘探,2022,50(8):16−28.

ZHAI Cheng,ZHENG Yangfeng,YU Xu,et al. Experimental study on the mechanical properties of coal–like materials for hydraulic fracturing simulation[J]. Coal Geology & Exploration,2022,50(8):16−28.

[12] 杨洪增,赵章,李玉宝. 高强度相似材料配比试验研究[J]. 煤矿安全,2018,49(9):59−62.

YANG Hongzeng,ZHAO Zhang,LI Yubao. Experimental study on ratio of high strength similar materials[J]. Safety in Coal Mines,2018,49(9):59−62.

[13] 刘孟瀚,范秋雁,韩进仕,等. 灰岩相似材料配比研究[J]. 红水河,2020,39(5):85−89.

LIU Menghan,FAN Qiuyan,HAN Jinshi,et al. Research on mix proportion of similar materials in limestone[J]. Hongshui River,2020,39(5):85−89.

[14] 史小萌,刘保国,肖杰. 水泥和石膏胶结相似材料配比的确定方法[J]. 岩土力学,2015,36(5):1357−1362.

SHI Xiaomeng,LIU Baoguo,XIAO Jie. A method for determining the ratio of similar materials with cement and plaster as bonding agents[J]. Rock and Soil Mechanics,2015,36(5):1357−1362.

[15] 张强勇,李术才,郭小红,等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学,2008,29(8):2126−2130.

ZHANG Qiangyong,LI Shucai,GUO Xiaohong,et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics,2008,29(8):2126−2130.

[16] 张强勇,刘德军,贾超,等. 盐岩油气储库介质地质力学模型相似材料的研制[J]. 岩土力学,2009,30(12):3581−3586.

ZHANG Qiangyong,LIU Dejun,JIA Chao,et al. Development of geomechanical model similitude material for salt rock oil–gas storage medium[J]. Rock and Soil Mechanics,2009,30(12):3581−3586.

[17] 王汉鹏,李术才,张强勇,等. 新型地质力学模型试验相似材料的研制[J]. 岩石力学与工程学报,2006,25(9):1842−1847.

WANG Hanpeng,LI Shucai,ZHANG Qiangyong,et al. Development of a new geomechanical similar material[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(9):1842−1847.

[18] 袁宗盼,陈新民,袁媛,等. 地质力学模型相似材料配比的正交试验研究[J]. 防灾减灾工程学报,2014,34(2):197−202.

YUAN Zongpan,CHEN Xinmin,YUAN Yuan,et al. Study on ratio of similar material of geomechanical model based on orthogonal test[J]. Journal of Disaster Prevention and Mitigation Engineering,2014,34(2):197−202.

[19] 董金玉,杨继红,杨国香,等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报,2012,37(1):44−49.

DONG Jinyu,YANG Jihong,YANG Guoxiang,et al. Research on similar material proportioning test of model test based on orthogonal design[J]. Journal of China Coal Society,2012,37(1):44−49.

[20] 吴起,帅金山,胡勇,等. 基于三鑫金铜矿的相似材料配比试验[J]. 现代矿业,2017,33(6):167−170.

WU Qi,SHUAI Jinshan,HU Yong,et al. Similar material ratio test based on Sanxinjin Copper Mine[J]. Modern Mining,2017,33(6):167−170.

[21] 叶义成,施耀斌,王其虎,等. 上横山多层页岩矿床低强度相似材料试验模型研究[J]. 岩土力学,2014,35(增刊2):114−120.

YE Yicheng,SHI Yaobin,WANG Qihu,et al. Test model research on low strength similar material of Shanghengshan multilayer shale deposit[J]. Rock and Soil Mechanics,2014,35(Sup.2):114−120.

[22] 朴春德,林雄. 软岩相似材料配比实验研究[J]. 工程地质学报,2018,26(增刊1):684−690.

PIAO Chunde,LIN Xiong. Experimental study on the proportion of similar materials of soft rock[J]. Journal of Engineering Geology,2018,26(Sup.1):684−690.

[23] 贾栋,姜德义,陈结,等. 综放工作面覆岩破坏特征及裂隙演化相似模拟试验研究[J]. 中国安全生产科学技术,2022,18(3):19−25.

JIA Dong,JIANG Deyi,CHEN Jie,et al. Similar simulation study on failure characteristics and fracture evolution of overlying strata in fully–mechanized caving face[J]. Journal of Safety Science and Technology,2022,18(3):19−25.

[24] 刘新荣,许彬,周小涵,等. 软硬互层岩体结构面宏细观剪切力学特性[J]. 煤炭学报,2021,46(9):2895−2909.

LIU Xinrong,XU Bin,ZHOU Xiaohan,et al. Investigation on the macro–meso shear mechanical properties of soft–hard interbedded rock discontinuity[J]. Journal of China Coal Society,2021,46(9):2895−2909.

[25] ZHANG Pandong,GAO Lin,LIU Pengze,et al. Study on the influence of borehole water content on bolt anchoring force in soft surrounding rock[J]. Shock and Vibration,2022,2022:2384626.

[26] ZHANG Pandong,GAO Lin,ZHAN Xinyu,et al. Investigation of the bearing characteristics of bolts on a coal–rock combined anchor body under different pull−out rates[J]. Energies,2022,15(9):3313.

[27] 张盼栋,高林,战新宇,等. 基于拉拔试验的煤岩组合锚固体分时破裂演化规律研究[J]. 矿业研究与开发,2023,43(3):111−117.

ZHANG Pandong,GAO Lin,ZHAN Xinyu,et al. Study on the development law of time–division fracture on coal–rock composite anchor based on pull–out test[J]. Mining Research and Development,2023,43(3):111−117.

[28] 国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S]. 北京:中国标准出版社,2021.

[29] 高林,赵世毫,黄小芬,等. 盘江矿区回采巷道围岩特征实验研究[J]. 贵州大学学报(自然科学版),2022,39(4):42−47.

GAO Lin,ZHAO Shihao,HUANG Xiaofen,et al. Experimental study on surrounding rock characteristics of gateway in Panjiang Mining Area[J]. Journal of Guizhou University (Natural Sciences),2022,39(4):42−47.

[30] 高林,刘鹏泽,张盼栋,等. 基本顶断裂形式对倾斜煤层沿空半煤岩巷围岩稳定性影响研究及工程应用[J]. 煤田地质与勘探,2022,50(6):73−80.

GAO Lin,LIU Pengze,ZHANG Pandong,et al. Influence of fracture types of main roof on the stability of surrounding rock of the gob–side coal–rock roadway in inclined coal seams and its engineering application[J]. Coal Geology & Exploration,2022,50(6):73−80.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.