Coal Geology & Exploration


As an important part of intelligent drilling, the intelligence of drilling tool system plays a crucial role in the intelligent development of coal mine underground drilling. In order to deeply explore the development direction of intelligent drilling tools, the research results and technical characteristics of intelligent drilling tools in coal mines were systematically sorted out from the aspects of directional drilling tools, measurement while drilling (MWD) system, intelligent drilling pipes and drill bits with reference to the experience in development of oil and gas industry, and the existing shortcomings were also summarized. It is pointed out that screw motor is mainly used at present in most of the intelligent directional drilling tools in coal mines, the research focuses on the geometric design of screw motor, the fatigue resistance of stator elastomer and customization of different technologies, and the development of rotary steerable drilling tools is in start-up phase, greatly deferring from the oil and gas industry. The MWD system can monitor few parameters, and the monitored data is mainly composed of the trajectory parameters. Therefore, Gamma formation identification was introduced gradually. The data was mainly transmitted by wire and mud pulse, with the problems of small data capacity and low transmission efficiency. However, the data transmission by wireless electromagnetic wave is only applicable in case of short distance, only satisfying the requirements of boreholes within 500 m. The research of intelligent drilling pipe was to optimize and improve the cable drill pipe, and the research of intelligent drill bit has not yet been carried out. In order to realize the intelligent drilling of coal mine, it was proposed to carry out the research on the orientation system of drilling tools based on the rotary steerable system and the comprehensive application of a variety of directional drilling tools. The MWD system should integrate the functions, such as gas monitoring, groundwater detection, ground stress sensing, and special requirements of coal mine drilling. Meanwhile, research was conducted on the MWD system with coexistence of multiple transmission methods to adapt to different drilling technologies, improve the transmission speed and realize the high-speed bidirectional transmission of information. Further, the intelligent drill pipe with load self-monitoring and the intelligent drill bit with self-monitoring of rock breaking parameters were also studied. Thereby, an intelligent drilling tool system with two-way communication and adaptive regulation that integrates the efficient rock breaking drilling, dynamic adjustment of drilling trajectory, drilling tool self-condition monitoring, and real-time monitoring of gas, groundwater and in-situ stress was developed through the optimal combination of drilling tool systems. The above research results will enrich the comprehensive understanding of the intelligent drilling tool system in coal mine, and provide the basis and guidance for the subsequent development of the intelligent drilling tool system.


intelligent drilling, rotary steerable system (RSS), measurement while drilling (MWD), intelligent drill pipe, intelligent drill bit, coal mine


[1] 中能传媒研究院. 中国能源大数据报告(2022)[EB/OL]. (2022). https://news.bjx.com.cn/html/20220719/1242318.shtml.

[2] 姚宁平,姚亚峰,方鹏,等. 我国煤矿坑道钻探装备技术进展与展望[J]. 钻探工程,2021,48(1):81−87.

YAO Ningping,YAO Yafeng,FANG Peng,et al. Advances and outlook of coal mine tunnel drilling equipment and technology[J]. Drilling Engineering,2021,48(1):81−87.

[3] 李泉新,刘飞,方俊. 煤矿坑道智能化钻探技术发展框架分析[J]. 工矿自动化,2020,46(10):9−13.

LI Quanxin,LIU Fei,FANG Jun. Analysis of development framework of intelligent coal mine underground drilling technology[J]. Industry and Mine Automation,2020,46(10):9−13.

[4] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.

LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.

[5] 王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18−24.

WANG Qingfeng,CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation,2018,44(11):18−24.

[6] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505−512.

WANG Minsheng,GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica,2020,41(4):505−512.

[7] 刘思瀛. 7LZ172金属螺杆马达研制[D]. 西安:西安石油大学,2016.

LIU Siying. Design and manufacture of 7LZ172 metallic displacement positive motor[D]. Xi’an:Xi’an Shiyou University,2016.

[8] 黄超,徐建宁,王宁新. 螺杆钻具马达线型的优化设计分析[J]. 电子测试,2017(15):34−35.

HUANG Chao,XU Jianning,WANG Ningxin. The optimized design analysis of screw drill is linear[J]. Electronic Test,2017(15):34−35.

[9] 陈欣,赵娜. 螺杆钻具马达线型的优化设计[J]. 重庆文理学院学报,2016,35(2):23−26.

CHEN Xin,ZHAO Na. Research of optimum design method with positive displacement motor linear[J]. Journal of Chongqing University of Arts and Sciences,2016,35(2):23−26.

[10] 赵娜. 螺杆钻具马达线型优化设计方法的研究[D]. 沈阳:沈阳工业大学,2016.

ZHAO Na. Screw drill motor linear optimization design method research[D]. Shenyang:Shenyang University of Technology,2016.

[11] 张士明,魏秦文,王圣林,等. 螺杆钻具马达配合过盈参数设定分析[J]. 重庆科技学院学报(自然科学版),2021,23(2):97−101.

ZHANG Shiming,WEI Qinwen,WANG Shenglin,et al. Analysis of interference parameter setting of screw drill motor[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition),2021,23(2):97−101.

[12] 陈逸珂. 螺杆马达定子衬套工作力学特性及疲劳寿命研究[D]. 成都:西南石油大学,2019.

CHEN Yike. Working mechanics characteristics and fatigue life analysis of PDM stator bushing[D]. Chengdu:Southwest Petroleum University,2019.

[13] 邵增元,关勤勤,刘轶溟. 螺杆马达定子衬套结构设计优化[J]. 石油工程建设,2018,44(6):17−19.

SHAO Zengyuan,GUAN Qinqin,LIU Yiming. Design optimization of stator bushing structure of positive displacement motor drill[J]. Petroleum Engineering Construction,2018,44(6):17−19.

[14] 屈文涛,解林,董卫国. 全金属螺杆马达定转子配合间隙优化[J]. 机械研究与应用,2017,30(1):156−157.

QU Wentao,XIE Lin,DONG Weiguo. Optimization of fit clearance for rotors and stators of all–metal PDM[J]. Mechanical Research and Application,2017,30(1):156−157.

[15] 李萌,于兴胜,罗西超,等. 螺杆钻具的前沿技术[J]. 石油机械,2011,39(9):19−22.

LI Meng,YU Xingsheng,LUO Xichao,et al. Cutting–edge technology for screw drilling tools[J]. China Petroleum Machinery,2011,39(9):19−22.

[16] 韩传军,邱亚玲,刘清友,等. 螺杆钻具等壁厚衬套的设计及仿真分析[J]. 钻采工艺,2007,30(6):88−90.

HAN Chuanjun,QIU Yaling,LIU Qingyou,et al. Design and performance analysis for equidistant lining of PDM[J]. Drilling & Production Technology,2007,30(6):88−90.

[17] 祝效华,石昌帅,童华. 等壁厚螺杆钻具定子衬套变形规律研究[J]. 石油机械,2011,39(12):5−8.

ZHU Xiaohua,SHI Changshuai,TONG Hua. Research on the deformation law of the stator lining in screw drill with equal wall thickness[J]. China Petroleum Machinery,2011,39(12):5−8.

[18] 郝荣明,王鑫,苏山林,等. 等壁厚螺杆钻具橡胶衬套设计分析和试验[J]. 石油矿场机械,2013,42(5):68−72.

HAO Rongming,WANG Xin,SU Shanlin,et al. Performance calculation of PDM equidistant elastomer lining with super–elastic constitutive model[J]. Oil Field Equipment,2013,42(5):68−72.

[19] 王可,董祉序,梁利,等. 多头螺杆钻具等壁厚定子衬套的性能分析[J]. 机床与液压,2015,43(13):82−85.

WANG Ke,DONG Zhixu,LIANG Li,et al. Capacity analysis of multi–lobe screw drill with iso–wall thickness stator[J]. Machine Tool & Hydraulics,2015,43(13):82−85.

[20] 刘建林,王四一,李泉新,等. 矿用小直径等壁厚螺杆马达的研究与应用[J]. 矿业研究与开发,2021,41(1):174−178.

LIU Jianlin,WANG Siyi,LI Quanxin,et al. Research and application of minor–diameter equal–wall–thickness screw motor used for mining[J]. Mining Research & Development,2021,41(1):174−178.

[21] 张杰,王毅,黄寒静,等. 煤矿井下钻进用多级排渣空气螺杆马达:中国,CN201710559662. 6[P]. 2017-09-29.

[22] 王四一,李泉新,刘建林,等. 冲击螺杆马达研制[J]. 煤田地质与勘探,2019,47(5):225−231.

WANG Siyi,LI Quanxin,LIU Jianlin,et al. Development of impact screw motor[J]. Coal Geology & Exploration,2019,47(5):225−231.

[23] 冯定,王鹏,张红,等. 旋转导向工具研究现状及发展趋势[J]. 石油机械,2021,49(7):8−15.

FENG Ding,WANG Peng,ZHANG Hong,et al. Research status and development trend of rotary steerable system tool[J]. China Petroleum Machinery,2021,49(7):8−15.

[24] 尹福来. 新型指向式旋转导向钻井工具导向控制研究[D]. 西安:西安石油大学,2021.

YIN Fulai. A new type of directional rotary–guided drilling tool–oriented control research[D]. Xi’an:Xi’an Shiyou University,2021.

[25] 袁子航. 煤矿井下高位钻孔旋转导向钻进轨迹控制技术研究[D]. 北京:煤炭科学研究总院,2021.

YUAN Zihang. Research on rotary steering drilling trajectory control technology of high–level borehole in coal mine[D]. Beijing:China Coal Research Institute,2021.

[26] 韦海瑞,朱芝同,吴川,等. 近钻头随钻测量系统及其小型化设计关键技术分析[J]. 钻探工程,2022,49(5):156−162.

WEI Hairui,ZHU Zhitong,WU Chuan,et al. Analysis on current status and key technology of miniaturization design of near–bit MWD systems[J]. Drilling Engineering,2022,49(5):156−162.

[27] 石智军,许超,李泉新,等. 随钻测量定向钻进技术在煤矿井下地质勘探中的应用[J]. 煤矿安全,2014,45(12):137−140.

SHI Zhijun,XU Chao,LI Quanxin,et al. Application of MWD directional drilling technology in geologic exploration in underground coal mine[J]. Safety in Coal Mines,2014,45(12):137−140.

[28] 刘京科. 矿用电磁波随钻测量仪在定向钻进中的应用[J]. 煤炭技术,2019,38(4):174−177.

LIU Jingke. Application of mine electromagnetic wave MWD in directional drilling[J]. Coal Technology,2019,38(4):174−177.

[29] 杨杰,樊志伟,徐红卫. 煤矿井下钻进钻孔随钻测量技术研究进展[J]. 煤炭与化工,2016,39(8):145−146.

YANG Jie,FAN Zhiwei,XU Hongwei. Research progress of underground drilling measurement technology[J]. Coal and Chemical Industry,2016,39(8):145−146.

[30] 康厚清. 小体积随钻存储测斜仪的设计及校准方法[J]. 矿业安全与环保,2018,45(4):54−58.

KANG Houqing. Design and calibration of small size storage MWD inclinometer[J]. Mining Safety & Environmental Protection,2018,45(4):54−58.

[31] LU Yiyu,LIU Yong,LI Xiaohong,et al. A new method of drilling long boreholes in low permeability coal by improving its permeability[J]. International Journal of Coal Geology,2010,84(2):94−102.

[32] 赵永哲. 煤矿区煤层气水平对接井轨迹控制与完井技术研究[D]. 北京:煤炭科学研究总院,2017.

ZHAO Yongzhe. Study on trajectory control and well completion technology for CBM horizontally-intersected well in coal mining areas[D]. Beijing:China Coal Research Institute,2017.

[33] 侯仕军,丁伟捷,田帅康,等. 随钻测量技术在非油气工程领域的应用现状与展望[J]. 矿业研究与开发,2022,42(12):41−49.

HOU Shijun,DING Weijie,TIAN Shuaikang,et al. Application status and prospects of MWD technology in non–oil and gas engineering field[J]. Mining Research and Development,2022,42(12):41−49.

[34] 王鲜,李泉新,许超,等. 顶板复杂岩层无线随钻测量复合定向钻进技术[J]. 煤矿安全,2019,50(9):88−91.

WANG Xian,LI Quanxin,XU Chao,et al. Composite directional drilling technology for wireless measurement while drilling in roof complex rock formations[J]. Safety in Coal Mines,2019,50(9):88−91.

[35] 陈泽平,闫保永,王国震,等. 煤矿井下随钻测量技术研究现状及展望[J]. 矿业安全与环保,2022,49(6):130−134.

CHEN Zeping,YAN Baoyong,WANG Guozhen,et al. Research status and prospect of MWD technology in coal mine[J]. Mining Safety & Environmental Protection,2022,49(6):130−134.

[36] 连杰,张冀冠. 煤矿井下电磁波无线随钻测量系统的设计与实现[J]. 电子设计工程,2020,28(13):133−136.

LIAN Jie, ZHANG Jiguan. Design and implementation of EM–MWD instrument in coal mine[J]. Electronic Design Engineering,2020,28(13):133−136.

[37] 邵春,胡闯,徐林,等. 套管外绝缘涂层特性对EM–MWD信号影响规律分析[J]. 煤田地质与勘探,2022,50(10):165−170.

SHAO Chun,HU Chuang,XU Lin,et al. Influencing factors of increasing the signal strength of the EM–MWD by applying insulation coating outside the casing[J]. Coal Geology & Exploration,2022,50(10):165−170.

[38] 芦甜,温国栋,马晓琳,等. 不同回火温度对一种低碳高强钢显微组织及力学性能的影响[J]. 煤田地质与勘探,2022,50(2):169−174.

LU Tian,WEN Guodong,MA Xiaolin,et al. Effects of different tempering temperatures on the microstructure and mechanical properties of a low–carbon high–strength steel[J]. Coal Geology & Exploration,2022,50(2):169−174.

[39] MICHAEL J J,DAVID R H,DARREL C H,et al. Telemetry drill pipe:Enabling technology for the downhole internet[R]. SPE 79885,2003:1–10.

[40] MICHAEL J J,PRIDECO G,HALL D R. Intelligent drill pipe creates the drilling network[C]. SPE Asia Pacific Oil and Gas Conference and Exhibition,Jakarta,2003.

[41] 胡永建,黄衍福,李显义. 磁耦合有缆钻杆关键技术与发展趋势[J]. 石油钻采工艺,2020,42(1):21−29.

HU Yongjian,HUANG Yanfu,LI Xianyi. Key technologies and development trend of magnetic–coupling wired drill pipe[J]. Oil Drilling & Production Technology,2020,42(1):21−29.

[42] 胡永建,黄衍福,刘岩生. 高频磁耦合有缆钻杆信道的联合仿真设计[J]. 石油学报,2019,40(4):475−481.

HU Yongjian,HUANG Yanfu,LIU Yansheng. Joint simulation design of the channel of high–frequency magnetic coupling wired drill pipe[J]. Acta Petrolei Sinica,2019,40(4):475−481.

[43] 石崇东,张绍槐. 智能钻柱设计方案及其应用[J]. 石油钻探技术,2004,32(6):7−10.

SHI Chongdong,ZHANG Shaohuai. Scheme design and application of intelligent drill string[J]. Petroleum Drilling Techniques,2004,32(6):7−10.

[44] 刘选朝,张绍槐. 智能钻柱信息及电力传输系统的研究[J]. 石油钻探技术,2006,34(5):10−13.

LIU Xuanchao,ZHANG Shaohuai. Study on information and power transmission based on an intelligent drill string[J]. Petroleum Drilling Techniques,2006,34(5):10−13.

[45] 田东庄,石智军,龚城,等. 煤矿井下近水平定向钻进配套钻杆的研制[J]. 煤炭科学技术,2013,41(3):24−27.

TIAN Dongzhuang,SHI Zhijun,GONG Cheng,et al. Research and development on drilling pipe matched for horizontal directional drilling in underground mine[J]. Coal Science and Technology,2013,41(3):24−27.

[46] 燕南飞. 煤矿用中心通缆式钻杆的设计[J]. 煤矿安全,2016,47(8):110−112.

YAN Nanfei. Design of center cable–type drilling rod for coal mine[J]. Safety in Coal Mines,2016,47(8):110−112.

[47] 燕南飞. 矿用中心通缆式钻杆关键技术研究[J]. 煤炭工程,2016,48(4):129−131.

YAN Nanfei. Research on key technology of central cable drill pipe in coal mine[J]. Coal Engineering,2016,48(4):129−131.

[48] 吕晋军. 煤矿井下用千米定向钻机通缆钻杆的研究[J]. 煤炭技术,2021,40(8):175−177.

LYU Jinjun. Research on cable drilling pipe of 1000 m directional drilling machine used in coal mine[J]. Coal Technology,2021,40(8):175−177.

[49] 朱宁. 大风量有线随钻测量螺旋钻杆设计及流场分析[J]. 煤炭技术,2020,39(11):181−184.

ZHU Ning. Design and flow field analysis of screw drill pipe with high air volume while drilling[J]. Coal Technology,2020,39(11):181−184.

[50] 马少明,田宏杰,王传留. 大通孔附壁式多通道穿线钻杆的结构设计与制造工艺研究[J]. 煤矿机械,2023,44(3):104−107.

MA Shaoming,TIAN Hongjie,WANG Chuanliu. Structure design and manufacturing process study of wall–attached multi–channel treading drill pipe with large inner hole[J]. Coal Mine Machinery,2023,44(3):104−107.

[51] 高晓亮,居培,赵建国. 煤层顶板大直径定向钻孔用双级双速 PDC 钻头设计及应用[J]. 煤田地质与勘探,2021,49(5):272−277.

GAO Xiaoliang,JU Pei,ZHAO Jianguo. Design and application of PDC bit for large diameter directional drilling of coal seam roof with double stage and double speed[J]. Coal Geology & Exploration,2021,49(5):272−277.

[52] 高晓亮,邵国杰,杨虎伟. 中硬煤层瓦斯穿层钻孔无泵式双通道机械掏穴钻头设计与应用[J]. 煤田地质与勘探,2022,50(10):159−164.

GAO Xiaoliang,SHAO Guojie,YANG Huwei. Design and application of pump–free double channel mechanical hole enlarging bit for gas penetration in middle hard coal seam[J]. Coal Geology & Exploration,2022,50(10):159−164.

[53] LESEULTRE A,LAMINE E,JONSSON A. An instrumented bit:A necessary step to the intelligent BHA[C]. IADC/SPE Drilling Conference,Dallas,1998.

[54] SINOR L A,HANSEN W R,DYKSTRA M W,et al. Drill bits with controlled cutter loading and depth of cut:US06298930B1[P]. 2001-10-09.

[55] 王以法. 新型智能钻头的设计[J]. 石油学报,2003,24(1):92−95.

WANG Yifa. A new intelligent bit design[J]. Acta Petrolei Sinica,2003,24(1):92−95.

[56] 兰雪梅. 贝克休斯公司发布第一款自适应钻头[J]. 天然气勘探与开发,2017,40(3):127.

LAN Xuemei. Baker Hughes releases its first adaptive drill bit[J]. Natural Gas Exploration and Development,2017,40(3):127.

[57] 朱丽华. 哈里伯顿推出新一代 CruzerTM 深切削滚珠元件钻头技术[J]. 钻采工艺,2017,40(4):118.

ZHU Lihua. Halliburton introduces a new generation of CruzerTM deep–cutting ball drill bit technology[J]. Drilling & Production Technology,2017,40(4):118.

[58] 吴泽兵,席凯凯,王杰,等. 可伸缩式PDC–孕镶金刚石耦合仿生智能钻头的破岩仿真[J]. 石油钻采工艺,2021,43(4):474−482.

WU Zebing,XI Kaikai,WANG Jie,et al. Rock breaking simulation of flexible PDC–impregnated diamond coupling bionic intelligent bit[J]. Oil Drilling & Production Technology,2021,43(4):474−482.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.