Coal Geology & Exploration
Numerical simulations and wavefield analysis of in-seam wave advance detection in viscoelastic media
Abstract
In-seam waves are commonly applied to the advance detection of hidden faults in front of mining faces. However, coal seams, which have viscoelasticity actually, imposing absorptive and attenuation effects on in-seam waves. To investigate the wave field characteristics and propagation patterns of in-seam waves in viscoelastic coal seam media, this study built a three-dimensional geological model of coal measures with faults based on Kelvin-Voigt’s first-order velocity-stress equation. Using this equation, three-dimensional finite-difference numerical simulation was carried out. The results indicate that (1) for reflected in-seam waves in viscoelastic media, which exhibit high energy attenuation, their propagation and attenuation characteristics are more consistent with the actual situation of coal seams than those of reflected in-seam waves in completely elastic media. (2) High Q values of coal seams correspond to better advance detection effects of in-seam waves. By contrast, too low Q values are associated with poor advance detection effects. In this case, the x component of reflected shear waves and the z component of the P-S waves can be used for advance detection. (3) When the fault throw is less than the coal thickness, the y and z components of in-seam waves can yield great advance detection effects. When the fault throw is greater than the coal thickness and above, the y component of in-seam waves can be employed for advance detection. (4) When the angle between a fault plane and the tunnel is greater than 60°, the y and z components of in-seam waves can be employed for advance detection. When the angle is less than 60°, the x and y components of in-seam waves can be used for advance detection. The results of this study could provide theoretical support for the in-seam wave advance detection of coal mines.
Keywords
in-seam wave, coal seam, viscoelasticity, numerical simulation, advance detection, wave field characteristics
DOI
10.12363/issn.1001-1986.23.04.0212
Recommended Citation
HE Dixiu, JI Guangzhong, JIAO Wenjie,
et al.
(2023)
"Numerical simulations and wavefield analysis of in-seam wave advance detection in viscoelastic media,"
Coal Geology & Exploration: Vol. 51:
Iss.
10, Article 16.
DOI: 10.12363/issn.1001-1986.23.04.0212
Available at:
https://cge.researchcommons.org/journal/vol51/iss10/16
Reference
[1] 沈鸿雁,李庆春,冯宏,等. 隧道反射地震法超前探测研究[J]. 铁道学报,2008,30(6):75−81.
SHEN Hongyan,LI Qingchun,FENG Hong,et al. Study on leading tunnel reflection seismic prediction[J]. Journal of the China Railway Society,2008,30(6):75−81.
[2] 郭银景,巨媛媛,范晓静,等. 槽波地震勘探研究进展[J]. 煤田地质与勘探,2020,48(2):216−227.
GUO Yinjing,JU Yuanyuan,FAN Xiaojing,et al. Progress in research of in–seam seismic exploration[J]. Coal Geology & Exploration,2020,48(2):216−227.
[3] BUCHANAN D J,DAVIS R,JACKSON P J,et al. Fault detection in coal by channel wave seismology:Some case histories[J]. Exploration Geophysics,1981,12(2):13−19.
[4] 张守恩,姜克富. 地震槽波法的方法试验[J]. 煤田地质与勘探,1981,8(2):35−45.
ZHANG Shou’en,JIANG Kefu. Method test of seismic in–seam wave method[J]. Coal Geology & Exploration,1981,8(2):35−45.
[5] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7.
WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic–while–excavating[J]. Coal Geology & Exploration,2021,49(4):1−7.
[6] 李晓波,董良国. 粘弹介质中可变网格地震波传播数值模拟[J]. 石油物探,2012,51(1):1−10.
LI Xiaobo,DONG Liangguo. Variable–grid numerical simulation of seismic wave propagation in visco–elastic media[J]. Geophysical Prospecting for Petroleum,2012,51(1):1−10.
[7] CARCIONE J M. Seismic modeling in viscoelastic media[J]. Geophysics,1993,58(1):110−120.
[8] 丛皖平,张鹏,王继矿. 多道瑞利波在矿井独头巷道超前探中的应用[J]. 煤田地质与勘探,2008,36(4):67−69.
CONG Wanping,ZHANG Peng,WANG Jikuang. Application of multichannel Rayleigh wave method on the advanced detecting technology to blinded leading[J]. Coal Geology & Exploration,2008,36(4):67−69.
[9] 杨思通,程久龙. 煤巷小构造Rayleigh型槽波超前探测数值模拟[J]. 地球物理学报,2012,55(2):655−662.
YANG Sitong,CHENG Jiulong. The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation[J]. Chinese Journal of Geophysics,2012,55(2):655−662.
[10] YANG Sitong,WEI Jiuchuan,CHENG Jiulong,et al. Numerical simulations of full−wave fields and analysis of channel wave characteristics in 3−D coal mine roadway models[J]. Applied Geophysics,2016,13(4):621−630.
[11] 蒋锦朋,何良,朱培民,等. 基于槽波的TVSP超前探测方法:可行性研究[J]. 地球物理学报,2018,61(9):3865−3875.
JIANG Jinpeng,HE Liang,ZHU Peimin,et al. TVSP method for reconnaissance beyond coal roadway based on in–seam seismic waves:A feasibility study[J]. Chinese Journal of Geophysics,2018,61(9):3865−3875.
[12] 孙华超,王勃,邢世雨,等. 煤巷围岩松动圈条件下的Love型槽波超前探测小断层方法研究[C]//2020年中国地球科学联合学术年会论文集. 北京:北京伯通电子出版社,2020:3000–3003.
[13] 呼邦兵,朱国维,刘金锁,等. 掘进煤巷采空区Rayleigh型槽波超前探测三维数值模拟研究[J]. 煤炭工程,2020,52(2):121−125.
HU Bangbing,ZHU Guowei,LIU Jinsuo,et al. Three–dimensional numerical simulation of the Rayleigh channel wave advance detection in the goaf of coal roadway[J]. Coal Engineering,2020,52(2):121−125.
[14] SUN Huachao,ZHANG Huide,WANG Jinyun,et al. Study on wave field characteristics and imaging of collapse column in three–dimensional detection with Love channel wave reflected outside the working face[J]. Open Journal of Geology,2020,10(11):1027−1039.
[15] 梁红波,曹静,李德春. 断层走向对槽波勘探效果的影响分析[J]. 煤炭技术,2021,40(5):85−88.
LIANG Hongbo,CAO Jing,LI Dechun. Analysis of influence of fault strike on in–seam wave exploration[J]. Coal Technology,2021,40(5):85−88.
[16] 苑春方,彭苏萍,张中杰,等. Kelvin−Voigt均匀黏弹性介质中传播的地震波[J]. 中国科学:地球科学,2005,35(10):957−962.
YUAN Chunfang,PENG Suping,ZHANG Zhongjie,et al. Seismic wave propagating in Kelvin−Voigt homogeneous visco−elastic media[J]. Scientia Sinica (Terrae),2005,35(10):957−962.
[17] 刘瑞珣,张秉良,张臣. 描述岩石粘弹性固体性质的开尔文模型[J]. 地学前缘,2008,15(3):221−225.
LIU Ruixun,ZHANG Bingliang,ZHANG Chen. The Kelvin model describing rock materials with behaviour of a viscoelastic solid[J]. Earth Science Frontiers,2008,15(3):221−225.
[18] 杨思通,程久龙,李守军,等. Kelvin–Voigt黏弹介质地震波衰减影响因素研究[J]. 山东科技大学学报(自然科学版),2010,29(5):1−7.
YANG Sitong,CHENG Jiulong,LI Shoujun,et al. Study on influence factors of seismic wave attenuation in Kelvin–Voigt viscoelastic media[J]. Journal of Shandong University of Science and Technology (Natural Science),2010,29(5):1−7.
[19] 严红勇,刘洋. Kelvin–Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探,2012,36(5):806−812.
YAN Hongyong,LIU Yang. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin–Voigt viscoelastic media[J]. Geophysical & Geochemical Exploration,2012,36(5):806−812.
[20] 姬广忠,吴荣新,张平松,等. 黏弹TI煤层介质3层模型Love槽波频散与衰减特征[J]. 煤炭学报,2021,46(2):566−577.
JI Guangzhong,WU Rongxin,ZHANG Pingsong,et al. Dispersion and attenuation characteristics of Love channel waves in the three–layer model of viscoelastic TI coal seam media[J]. Journal of China Coal Society,2021,46(2):566−577.
[21] 张壹,王赟,王祥春,等. 黏弹性介质地震波吸收衰减研究进展[J]. 石油物探,2021,60(2):238−250.
ZHANG Yi,WANG Yun,WANG Xiangchun,et al. Research progress on the absorption attenuation of seismic waves in viscoelastic media[J]. Geophysical Prospecting for Petroleum,2021,60(2):238−250.
[22] 焦文杰,姬广忠,唐学武,等. 黏弹煤层介质断层构造槽波响应特征分析[J]. 煤矿安全,2023,54(1):154−160.
JIAO Wenjie,JI Guangzhong,TANG Xuewu,et al. Analysis of response characteristics of fault structural channel wave in viscoelastic coal seam[J]. Safety in Coal Mines,2023,54(1):154−160.
[23] 钱建伟,李德春. Love型槽波的基本特性研究[J]. 中国煤炭地质,2013,25(9):52−54.
QIAN Jianwei,LI Dechun. A study on Love mode channel wave basic characteristics[J]. Coal Geology of China,2013,25(9):52−54.
[24] 胡国泽,滕吉文,皮娇龙,等. 井下槽波地震勘探:预防煤矿灾害的一种地球物理方法[J]. 地球物理学进展,2013,28(1):439−451.
HU Guoze,TENG Jiwen,PI Jiaolong,et al. In–seam seismic exploration techniques:A geophsical method predicting coal–mine disaster[J]. Progress in Geophysics,2013,28(1):439−451.
[25] 程建远,江浩,姬广忠,等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术,2015,43(2):25−28.
CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al. Channel wave seismic exploration technology based on node digital seismograph in underground mine[J]. Coal Science and Technology,2015,43(2):25−28.
[26] 孙喆,江微娜. 基于小波分解重构方法提取煤层反射槽波信号[J]. 煤炭技术,2019,38(12):55−57.
SUN Zhe,JIANG Weina. Based on wavelet decomposition and reconstruction method in extraction of in–seam reflection signal[J]. Coal Technology,2019,38(12):55−57.
[27] 高玉超,邓重青,李继路. 槽波超前勘探技术在巷道前方探测断层的应用[J]. 山东煤炭科技,2020(4):166−168.
GAO Yuchao,DENG Zhongqing,LI Jilu. Application of trough wave advanced exploration technology in detecting faults in front of roadway[J]. Shandong Coal Science and Technology,2020(4):166−168.
[28] 龚敏. 有限差分法地震波场模拟与逆时偏移[D]. 成都:成都理工大学,2014.
GONG Min. Finite difference method of seismic wave field simulation and reverse time migration[D]. Chengdu:Chengdu University of Technology,2014.
[29] 姬广忠,程建远,朱培民. 煤层Love型槽波数值模拟及其频散特征分析[J]. 煤炭科学技术,2011,39(6):106−109.
JI Guangzhong,CHENG Jianyuan,ZHU Peimin. Numerical simulation of seam Love type channel–wave and analysis on dispersion features[J]. Coal Science and Technology,2011,39(6):106−109.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons