•  
  •  
 

Coal Geology & Exploration

Abstract

The construction of Full Face Tunnel Boring Machine (TBM) in coal mines is crucial for achieving efficient and modern high-intensity development and mining operations. However, TBM has poor adaptability to adverse geological conditions, such as fracture zones, faults, soft rock layers, and water-rich areas, which can cause problems such as collapses, equipment sticking, and water gushing, hindering their development. To fully utilize the rapid tunneling efficiency of TBM, integrated design between advanced detection instruments and TBM must be performed. The key technology is the breakthrough in detection-while-tunneling. This paper reviews recent advancements in the integrated tunneling and detection technology of rock roadways in TBM construction. The seismic-while-tunneling, geoelectric-while-tunneling, and transient electromagnetic-while-tunneling technologies are introduced. The focus is on improving the accuracy of advanced detection while tunneling and realizing high-precision imaging of anomalous bodies. The development direction of the integrated tunneling and detection technology includes the advanced detection data acquisition system, signal processing method, and new roadway interface imaging methods. To achieve automation, information, and intelligence in tunneling and detection, an integrated management platform with an intelligent control system at its core should be established. This platform will allow for the intelligent selection of tunneling parameters and real-time processing and superposition imaging of advanced detection data. Additionally, an integrated identification system for intelligent control and geological conditions should be formed to provide transparent geological condition support for precise deep coal resource development and intelligent coal mine construction.

Keywords

integrated tunneling and exploring, TBM construction, advanced detection, transparent geology, rock roadway

DOI

10.12363/issn.1001-1986.22.12.0967

Reference

[1] 国家统计局. 能源转型持续推进节能降耗成效显著——党的十八大以来经济社会发展成就系列报告之十四[EB/OL]. http://www.stats.gov.cn/xxgk/jd/sjjd2020/202210/t20221008_1888971.html,2020-10-08/2023-01-30.

[2] 国家能源局. 我国煤炭工业实现十大历史性转变[EB/OL]. http://www.nea.gov.cn/2018-11/15_c13760-7900.htm,2018-11-15/2023-01-30.

[3] 中国煤炭工业协会. 煤炭工业“十四五”高质量发展指导意见[EB/OL]. www.chinacaj.net/I,34130820. html. 2021-06-04/2023-01-30.

[4] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.

YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.

[5] 刘泉声,时凯,黄兴. TBM应用于深部煤矿建设的可行性及关键科学问题[J]. 采矿与安全工程学报,2013,30(5):633−641.

LIU Quansheng,SHI Kai,HUANG Xing. Feasibility of application of TBM in construction of deep coal mine and its key scientific problems[J]. Journal of Mining & Safety Engineering,2013,30(5):633−641.

[6] 刘泉声,黄兴,时凯,等. 煤矿超千米深部全断面岩石巷道掘进机的提出及关键岩石力学问题[J]. 煤炭学报,2012,37(12):2006−2013.

LIU Quansheng,HUANG Xing,SHI Kai,et al. Utilization of full face roadway boring machine in coal mines deeper than 1 000 m and the key rock mechanics problems[J]. Journal of China Coal Society,2012,37(12):2006−2013.

[7] 张洪伟,胡兆锋,程敬义,等. 深部高温矿井大断面岩巷TBM 智能掘进技术:以“新矿1 号”TBM 为例[J]. 煤炭学报,2021,46(7):2174−2185.

ZHANG Hongwei,HU Zhaofeng,CHENG Jingyi,et al. TBM techniques for intelligent excavating large–section rock roadway in the deep high–temperature coal mines:Application of TBM in Xinkuang No.1[J]. Journal of China Coal Society,2021,46(7):2174−2185.

[8] 范京道,封华,宋朝阳,等. 可可盖煤矿全矿井机械破岩智能化建井关键技术与装备[J]. 煤炭学报,2022,47(1):499−514.

FAN Jingdao,FENG Hua,SONG Zhaoyang,et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine[J]. Journal of China Coal Society,2022,47(1):499−514.

[9] 刘泉声,黄兴,刘建平,等. 深部复合地层围岩与TBM 的相互作用及安全控制[J]. 煤炭学报,2015,40(6):1213−1224.

LIU Quansheng,HUANG Xing,LIU Jianping,et al. Interaction and safety control between TBM and deep mixed ground[J]. Journal of China Coal Society,2015,40(6):1213−1224.

[10] 王杜娟,贺飞,王勇,等. 煤矿岩巷全断面掘进机(TBM)及智能化关键技术[J]. 煤炭学报,2020,45(6):2031−2044.

WANG Dujuan,HE Fei,WANG Yong,et al. Tunnel boring machine (TBM) in coal mine and its intelligent key technology[J]. Journal of China Coal Society,2020,45(6):2031−2044.

[11] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

[12] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.

[13] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[14] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173.

ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.

[15] 张凤凯. TBM破岩震源探测数据的全波形反演和逆时偏移成像方法[D]. 济南:山东大学,2020.

ZHANG Fengkai. Full waveform inversion and inverse time migration imaging method of the seismic data while tunneling using TBM drilling noise in tunnel[D]. Jinan:Shandong University,2020.

[16] LUTH S,GIESE R,RECHLIN A. A seismic exploration system around and ahead of tunnel excavation–onsite[C]//World Tunnel Congress 2008. 2008:119–125.

[17] RECHLIN A,LUTH S,GIESE R. Onsite:Integrated seismic imaging and interpretation for tunnel excavation[C]//Proceedings of the International Conference on Rock Joints and Jointed Rock Masses. 2009:1–7.

[18] 许新骥. TBM掘进破岩震源地震波超前地质探测方法及工程应用[D]. 济南:山东大学,2017.

XU Xinji. TBM rock−breaking source seismic method and its applications for ahead geological prospecting in TBM construction tunnel[D]. Jinan:Shandong University,2017.

[19] 李圣林,张平松,姬广忠,等. 随掘地震超前探测掘进机震源信号的复合干涉处理研究[J]. 采矿与安全工程学报,2022,39(2):305−316.

LI Shenglin,ZHANG Pingsong,JI Guangzhong,et al. Compound interference processing of roadheader source signal for advanced seismic detection while drilling[J]. Journal of Mining & Safety Engineering,2022,39(2):305−316.

[20] 宋杰. 隧道施工不良地质三维地震波超前探测方法及其工程应用[D]. 济南:山东大学,2016.

SONG Jie. The three−dimensional seismic ahead prospecting method and its application for adverse geology in tunnel construction[D]. Jinan:Shandong University,2016.

[21] LIU Bin,CHEN Lei,LI Shucai,et al. Three–dimensional seismic ahead–prospecting method and application in TBM tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering,2017,143(12):04017090.

[22] KOPP T. Beam bore–tunnelling electrical ahead monitoring for TBM and drill & blast drivages[C]//Proceedings of 2006 China International Symposium on High Speed Railway Tunnels. Beijing,2006:574–588.

[23] KAUS A,BOENING W. Beam−geoelectrical ahead monitoring for TBM−drives[J]. Geomechanics and Tunnelling,2008,1(5):442−450.

[24] 李术才,聂利超,刘斌,等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报,2015,59(4):1434−1446.

LI Shucai,NIE Lichao,LIU Bin,et al. Advanced detection and physical model test based on multi–electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics,2015,59(4):1434−1446.

[25] 刘斌,李术才,李建斌,等. TBM掘进前方不良地质与岩体参数的综合获取方法[J]. 山东大学学报(工学版),2016,46(6):105−112.

LIU Bin,LI Shucai,LI Jianbin,et al. Integrated acquisition method of adverse geology and rock properties ahead of tunnel face in TBM construction tunnel[J]. Journal of Shandong University (Engineering Science),2016,46(6):105−112.

[26] 剪浩杰. TBM施工隧道前向三维多电极在线地质预报系统[D]. 武汉:武汉工程大学,2016.

JIAN Haojie. On–line geological prediction system for three-dimensional multi electrode in front of TBM construction tunnel[D]. Wuhan:Wuhan Institute of Technology,2016.

[27] 田明禛. TBM机载激发极化超前地质预报仪的研制与工程应用[D]. 济南:山东大学,2016.

TIAN Mingzhen. TBM Airborne instrument development of advanced geological prediction for induced polarization and its application for the engineering field[D]. Jinan:Shandong University,2016.

[28] 王传武. TBM施工隧道含水构造三维激发极化超前探测方法与应用[D]. 济南:山东大学,2017.

WANG Chuanwu. Three−dimension induced polarization advanced prospecting method and its application for water bearing structure in TBM tunnel[D]. Jinan:Shandong University,2017.

[29] 聂利超. 隧道施工含水构造激发极化定量超前地质预报理论及其应用[D]. 济南:山东大学,2014.

NIE Lichao. Quantitative identification theory and its application of advanced geological prediction for water–bearing structure using induced polarization in tunnel construction period[D]. Jinan:Shandong University,2014.

[30] 刘斌,李术才,聂利超,等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报,2012,34(10):1866−1876.

LIU Bin,LI Shucai,NIE Lichao,et al. Advanced detection of water–bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1866−1876.

[31] 胡佳豪. TBM施工隧道瞬变电磁超前探测研究[D]. 西安:长安大学,2020.

HU Jiahao. Research on transient electromagnetic advanced detection of TBM construction tunnel[D]. Xi’an:Chang’an University,2020.

[32] 胡佳豪,李貅,刘航,等. TBM 机施工隧道瞬变电磁超前探测研究[J]. 物探与化探,2020,44(5):1183−1189.

HU Jiahao,LI Xiu,LIU Hang,et al. Research on the advanced detection of transient electromagnetic in tunnel construction by TBM[J]. Geophysical and Geochemical Exploration,2020,44(5):1183−1189.

[33] 卢绪山. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[D]. 西安:长安大学,2014.

LU Xushan. Three dimensional parallel simulation of transient electromagnetic response of tunnel boring machine and the elimination of its response[D]. Xi’an:Chang’an University,2014.

[34] 孙怀凤,李貅,卢绪山,等. 隧道强干扰环境瞬变电磁响应规律与校正方法:以 TBM 为例[J]. 地球物理学报,2016,59(12):4720−4732.

SUN Huaifeng,LI Xiu,LU Xushan,et al. Transient electromagnetic responses in tunnels with strong interferences and the correcting method:A TBM example[J]. Chinese Journal of Geophysics,2016,59(12):4720−4732.

[35] 戚志鹏,郭建磊,孙乃泉,等. 隧道瞬变电磁克希霍夫偏移成像与地质灾害探测[J]. 煤田地质与勘探,2022,50(5):129−135.

QI Zhipeng,GUO Jianlei,SUN Naiquan,et al. Geological structure detection with tunnel transient electromagnetic Kirchhoff 2D migration imaging[J]. Coal Geology & Exploration,2022,50(5):129−135.

[36] 赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117−120.

ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117−120.

[37] ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1−15.

[38] 赵栓峰,拜云瑞,黄涛,等. 基于移动阵列电极的盾构超前探测正演响应分析[J]. 煤田地质与勘探,2020,48(1):214−220.

ZHAO Shuanfeng,BAI Yunrui,HUANG Tao,et al. Forward response analysis of shield advanced detection with moving array electrode[J]. Coal Geology & Exploration,2020,48(1):214−220.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.