Coal Geology & Exploration


In China, there is an urgent need for intelligent and environmentally friendly coal mining practices to address the issue of accurately mapping transparent geological conditions, including coal rock structures, water-bearing bodies, goafs, and underground stress. These hidden disaster-causing bodies are prone to triggering mine accidents such as water inrush or gas outburst, which is the main obstacle to safe and intelligent coal mining. Three-dimensional seismic exploration is the main technology for detecting geological bodies such as faults and collapse columns. However, this technology, based on the framework of reflection theory, faces challenges in detecting small-drop faults and small-scale collapse columns. To develop a fine exploration theory and method for hidden disaster-causing bodies in coal fields is a basic research issue for safe and intelligent mining. The seismic exploration framework based on diffraction theory can theoretically break through the bottleneck of traditional seismic exploration resolution and this cutting-edge technology has been continuously reported in authoritative exploration journals. Domestic and foreign industries and research institutions have also invested a lot of research work, but have not yet formed a systematic method and mature software. To solve the problems of coalfield disaster source prevention and intelligent mining, a seismic exploration system based on the diffraction theory framework is proposed. This system includes weak signal acquisition involved with the propagation law of different types of diffractions, extraction of high-resolution diffraction information by multi-domain difference features of reflected and diffraction waves, a fine diffraction velocity modeling method based on a scattering point model, diffraction interpretation of multi-attribute fusion and the corresponding impedance inversion technology. The proposed seismic diffraction exploration has the potential to provide a basic discipline and frontier technology suitable for the safe mining of transparent mines in China.


mine safety, hidden disaster, seismic exploration, diffraction




[1] 郭宏占,谢琼芳. 矿井隐蔽致灾地质因素普查与防控[J]. 内蒙古煤炭经济,2018(15):109.

GUO Hongzhan,XIE Qiongfang. General survey and prevention and control of geological factors causing hidden disasters in mines[J]. Inner Mongolia Coal Economy,2018(15):109.

[2] 方俊. 煤矿井下隐蔽致灾因素定向钻孔探查技术研究[D]. 西安:西安科技大学,2019.

FANG Jun. Exploration technology of hidden disaster causing factors by underground directional drilling in coal mine[D]. Xi’an:Xi’an University of Science and Technology,2019.

[3] 谢良鲜. 浅谈如何做好煤矿隐蔽致灾地质因素的普查工作[J]. 能源与节能,2016(10):5−6.

XIE Liangxian. On how to work well in the general survey of hidden hazard–causing geological factors of coal mines[J]. Energy and Energy Conservation,2016(10):5−6.

[4] 魏子荣,杜兴亚,方正,等. 我国煤矿采区高分辨率地震勘探的成果[J]. 煤田地质与勘探,2000,28(1):55−60.

WEI Zirong,DU Xingya,FANG Zheng,et al. The results and prospect of high resolution seismic exploration in mine districts of China[J]. Coal Geology & Exploration,2000,28(1):55−60.

[5] 武喜尊,赵镨. 中国煤炭地震勘探技术发展[J]. 中国煤田地质,2003,15(6):51−55.

WU Xizun,ZHAO Pu. Coalfield seismic prospecting technology development in China[J]. Coal Geology of China,2003,15(6):51−55.

[6] 徐涵洵,张和生,卫红学. 陷落柱柱体结构的地震波场分析[J]. 煤矿安全,2015,46(3):186−189.

XU Hanxun,ZHANG Hesheng,WEI Hongxue. Seismic wave field analysis for structure of collapse column[J]. Safety in Coal Mines,2015,46(3):186−189.

[7] 王哲,胡洪涛. 三维地震勘探在小回沟矿井首采区的应用研究[J]. 煤矿现代化,2015(6):1−2.

WANG Zhe,HU Hongtao. Application of 3D seismic exploration in the first mining area of Xiaohuigou Mine[J]. Coal Mine Modernization,2015(6):1−2.

[8] 张广忠,张运成,李长河,等. 煤矿采空区下组煤三维地震勘探技术[J]. 煤田地质与勘探,2009,37(1):66−68.

ZHANG Guangzhong,ZHANG Yuncheng,LI Changhe,et al. 3D seismic exploration technology for lower coal group in gob area[J]. Coal Geology & Exploration,2009,37(1):66−68.

[9] 孟凡彬,左卫华. 地震勘探技术在煤矿隐蔽致灾地质中的应用[J]. 地质装备,2019,20(2):27−32.

MENG Fanbin,ZUO Weihua. Application of seismic exploration technology in hidden hazard geology at coal mines[J]. Equipment for Geotechnical Engineering,2019,20(2):27−32.

[10] 卢慧颖. 抓住根本 预防为主源头治理:全国煤矿隐蔽致灾因素普查治理综述[N]. 中国煤炭报,2022-09-08(002).

[11] 赵惊涛,彭苏萍,陈宗南,等. 煤矿隐蔽致灾地质体地震绕射波探测方法[J]. 矿业科学学报,2022,7(1):1−8.

ZHAO Jingtao,PENG Suping,CHEN Zongnan,et al. Seismic diffraction detection method for geological hidden disasters in coal mining[J]. Journal of Mining Science and Technology,2022,7(1):1−8.

[12] 赵惊涛,王真理,于彩霞. 地震勘探中的边缘绕射波及其动力学识别方法[J]. 地球物理学进展,2011,26(1):194−206.

ZHAO Jingtao,WANG Zhenli,YU Caixia. Edge diffractive wave and its dynamic detection methods in seismic exploration[J]. Progress in Geophysics,2011,26(1):194−206.

[13] YU Caixia,ZHAO Jingtao,WANG Yanfei,et al. Separation and imaging diffractions by a sparsity–promoting model and subspace trust–region algorithm[J]. Geophysical Journal International,2017,208(3):1756−1763.

[14] LIN Peng,PENG Suping,ZHAO Jingtao,et al. A new scheme for velocity analysis and imaging of diffractions[J]. Journal of Geophysics and Engineering,2018,15(3):1084−1093.

[15] PENG Suping,ZHANG Jincai. Engineering geology for underground rocks[M]. Springer,2007.

[16] FOMEL S,LANDA E,TANER M T. Poststack velocity analysis by separation and imaging of seismic diffractions[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2007,72(6):U89−U94.

[17] BURNETT W,FOMEL S,BANSAL R. Diffraction velocity analysis by path–integral seismic imaging[C]//SEG Technical Program Expanded Abstracts. Houston:Society of Exploration Geophysicists,2011,30(1):3898–3902.

[18] RESHEF M. Interval velocity analysis in the dip–angle domain[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2008,73(5):VE353−VE360.

[19] BERKOVITCH A,BELFER I,HASSIN Y,et al. Diffraction imaging by multifocusing[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2009,74(6):WCA75−WCA81.

[20] COIMBRA T A,NOVAIS A,SCHLEICHER J. Offset–continuation trajectory stack[C]//SEG Technical Program Expanded Abstracts. Houston:Society of Exploration Geophysicists,2013:4256–4261.

[21] DECKER L,FOMEL S. A probabilistic approach to seismic diffraction imaging[J]. Lithosphere,2021,2021(1):1−23.

[22] LIU Yan,WANG Yanghua. Seismic characterization of a carbonate reservoir in Tarim Basin[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2017,82(5):B177−B188.

[23] XIANG Kun,HAN Linghe,HU Ziduo,et al. Improving the resolution of impedance inversion in karst systems by incorporating diffraction information:A case study of Tarim Basin,China[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2020,85(6):B223−B232.

[24] XIANG Kun,LANDA E. Poststack impedance inversion considering the diffractive component of the wavefield[J]. Geophysics,2019,85(1):1−101.

[25] 郭然,董秀桃,张旭刚. 综采面地质小构造无线电波坑道透视技术[J]. 煤炭科学技术,2009,37(11):99−101.

GUO Ran,DONG Xiutao,ZHANG Xugang. Gateway radio wave penetration technology for small geological structure in fully mechanized coal mining face[J]. Coal Science and Technology,2009,37(11):99−101.

[26] 田海艳. 煤矿掘进中常见小型地质构造分析[J]. 黑龙江科技信息,2012(1):84.

TIAN Haiyan. Analysis of common small geological structures in coal mine tunneling[J]. Heilongjiang Science and Technology Information,2012(1):84.

[27] 唐建益,汤英侠,高远. 煤矿采区地质小构造的三维地震勘探技术[J]. 物探与化探,1998,22(2):99−108.

TANG Jianyi,TANG Yingxia,GAO Yuan. The 3D seismic technique for minor geologic structures in coal mines[J]. Geophysical & Geochemical Exploration,1998,22(2):99−108.

[28] 程建远,赵伟,曹丁涛,等. 煤矿采区三维地震探采对比效果的分析与思考[J]. 中国煤炭地质,2010,22(8):67−72.

CHENG Jianyuan,ZHAO Wei,CAO Dingtao,et al. Pondering on coalmine winning district 3D seismic correlation of prospecting and mining information effect analysis[J]. Coal Geology of China,2010,22(8):67−72.

[29] 杨晓东,杨德义. 煤田陷落柱特殊波对陷落柱解释的影响[J]. 物探与化探,2010,34(5):627−631.

YANG Xiaodong,YANG Deyi. An analysis of the special wave impaction the interpretation of the coal field collapse column[J]. Geophysical & Geochemical Exploration,2010,34(5):627−631.

[30] LIU Qiannan,PENG Suping,ZHAO Jingtao,et al. Dynamic characteristics of edge diffraction coefficients in the Azimuth domain[C]//European Association of Geoscientists & Engineers. 81st EAGE Conference and Exhibition 2019. 2019:1–5.

[31] LANDA E,SHTIVELMAN V,GELCHINSKY B. A method for detection of diffracted waves on common–offset sections[J]. Geophysical Prospecting,1987,35(4):359−373.

[32] LIU Qiannan,PENG Suping,ZHAO Jingtao,et al. 3D edge–diffraction coefficients in the azimuth and emergence domain[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2019,84(2):T73−T82.

[33] KLEM–MUSATOV K D,AIZENBERG A M. The ray method and the theory of edge waves[J]. Geophysical Journal International,1984,79(1):35−50.

[34] LIN Peng,PENG Suping,ZHAO Jingtao,et al. Accurate diffraction imaging for detecting small−scale geologic discontinuities[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2018,83(5):S447−S457.

[35] CLAERBOUT J F. Earth soundings analysis:Processing versus inversion[M]. Boston:Blackwell Scientific Publications,1992.

[36] CLAERBOUT J F,BROWN M. Two–dimensional textures and prediction−error filters:61st EAGE Conference and Exhibition[C]. 1999.

[37] FOMEL S. Applications of plane–wave destruction filters[J]. Geophysics,2002,67(6):1946−1960.

[38] TANER M T,FOMEL S,LANDA E. Separation and imaging of seismic diffractions using plane–wave decomposition[C]//SEG/New Orleans 2006 Annual Meeting. Houston:Society of Exploration Geophysicists,2006:2401–2405.

[39] KONG Xue,WANG Deying,LI Zhenchun,et al. Diffraction separation by plane–wave prediction filtering[J]. Applied Geophysics,2017,14(3):399−405.

[40] LIN Peng,PENG Suping,ZHAO Jingtao,et al. L1–norm regularization and wavelet transform:An improved plane–wave destruction method[J]. Journal of Applied Geophysics,2018,148:16−22.

[41] YU Caixia,WANG Yanfei,ZHAO Jingtao. A seismic diffraction extraction method for the study of discontinuous geologies using a regularisation algorithm[J]. Exploration Geophysics,2017,48(1):49−55.

[42] ZHAO Jingtao,YU Caixia,PENG Suping,et al. Online dictionary learning method for extracting GPR diffractions[J]. Journal of Geophysics and Engineering,2019,16(6):1116−1123.

[43] LI Chuangjian,PENG Suping,CUI Xiaoqin,et al. Diffraction separation using structure–oriented orthogonal polynomial transform[J]. Geophysics,2022,87(5):V397−V404.

[44] LIN Peng,PENG Suping,ZHAO Jingtao,et al. Diffraction separation and imaging using multichannel singular–spectrum analysis[J]. Geophysics,2020,85(1):V11−V24.

[45] LIN Peng,ZHAO Jingtao,PENG Suping,et al. A robust adaptive rank–reduction method for 3D diffraction separation and imaging[J]. Pure and Applied Geophysics,2021,178:2917−2931.

[46] LIN Peng,ZHAO Jingtao,PENG Suping. Low–rank diffraction separation using an improved MSSA algorithm[J]. Acta Geophysica,2021,69:1651−1665.

[47] LIN Peng,PENG Suping,CUI Xiaoqin,et al. Effective diffraction separation using the improved optimal rank–reduction method[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2022,87(3):V169−V182.

[48] LIN Peng,LI Chuangjian,PENG Suping. Diffraction extraction using a low–rank matrix approximation method[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1−5.

[49] WANG Hang,LIU Xingye,CHEN Yangkang. Separation and imaging of seismic diffractions using a localized rank–reduction method with adaptively selected ranks[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2020,85(6):V497−V506.

[50] 魏巍,高鸿,刘忠岩. 奇异值分解技术在绕射波分离成像中的应用研究[J]. 石油物探,2020,59(2):236−241.

WEI Wei,GAO Hong,LIU Zhongyan. Separation and imaging of seismic diffractions using singular value decomposition[J]. Geophysical Prospecting for Petroleum,2020,59(2):236−241.

[51] LI Chuangjian,PENG Suping,ZHAO Jingtao,et al. Polarity–preserved diffraction extracting method using modified apex–shifted Radon transform and double–branch Radon transform[J]. Journal of Geophysics and Engineering,2018,15(5):1991−2000.

[52] LIN Peng,ZHAO Jingtao,PENG Suping,et al. Diffraction separation by variational mode decomposition[J]. Geophysical Prospecting,2021,69(5):1070−1085.

[53] LIN Peng,PENG Suping,YANG X,et al. Geometric mode decomposition method for diffraction separation[C]//Society of Exploration Geophysicists. Second International Meeting for Applied Geoscience & Energy. 2022:2837–2841.

[54] DELL S,GAJEWSKI D. Common–reflection–surface–based workflow for diffraction imaging[J]. Geophysics,2011,76(5):S187−S195.

[55] SHENG Tongjie,ZHAO Jingtao. Separation and imaging of diffractions using a dilated convolutional neural network[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2022,87(3):S117−S127.

[56] KIM S,JEE SEOL S,BYUN J,et al. Extraction of diffractions from seismic data using convolutional U–net and transfer learning[J]. Geophysics,2022,87(2):V117−V129.

[57] KHAIDUKOV V,LANDA E,MOSER T J. Diffraction imaging by focusing−defocusing:An outlook on seismic superresolution[J]. Geophysics,2004,69(6):1478−1490.

[58] ZHAO Jingtao,SUN Xiuli,PENG Suping,et al. Separating prestack diffractions with SVMF in the flattened shot domain[J]. Journal of Geophysics and Engineering,2019,16(2):389−398.

[59] 刘建,沈鸿雁,席井昌,等. 利用绕射波提高煤田陷落柱预测精度的方法[J]. 煤炭学报,2022,47(9):3442−3450.

LIU Jian,SHEN Hongyan,XI Jingchang,et al. Improving the prediction accuracy of coalfield collapse column via diffraction wave imaging[J]. Journal of China Coal Society,2022,47(9):3442−3450.

[60] LIN Peng,PENG Suping,HUANG Xingguo,et al. Plane–wave destruction–based workflow for prestack diffraction separation in the shot domain[J]. Pure and Applied Geophysics,2022,179(6/7):2215−2229.

[61] LI Chuangjian,PENG Suping,CUI Xiaoqin,et al. Prestack diffraction separation by parameterizing the reflection local slope[J]. Geophysics,2022,87(2):S35−S44.

[62] LI Chuangjian,ZHAO Jingtao,PENG Suping,et al. Prestack diffraction separation in the common virtual source gather[J]. Geophysics,2020,86(2):S113−S124.

[63] CHEN Jing. Specular ray parameter extraction and stationary–phase migration[J]. Geophysics,2004,69(1):249−256.

[64] MOSER T J,HOWARD C B. Diffraction imaging in depth[J]. Geophysical Prospecting,2008,56(5):627−641.

[65] LI Chuangjian,PENG Suping,ZHAO Jingtao,et al. Diffraction imaging using an adaptive phase filter[J]. Geophysical Prospecting,2020,68(1):164−177.

[66] LI Chuangjian,ZHAO Jingtao,PENG Suping,et al. Enhancing subsurface diffractions using demigration method[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(7):1179−1183.

[67] LI Chuangjian,PENG Suping,CUI Xiaoqin,et al. Identifying discontinuities by extracting diffractivity from migrated seismic profiles[J]. Pure and Applied Geophysics,2022,179:1173−1182.

[68] ZHAO Jingtao,WANG Yanfei,YU Caixia. Diffraction imaging by uniform asymptotic theory and double exponential fitting[J]. Geophysical Prospecting,2015,63(2):338−353.

[69] ZHAO Jingtao,PENG Suping,DU Wenfeng,et al. Diffraction imaging method by Mahalanobis–based amplitude damping[J]. Geophysics,2016,81(6):S399−S408.

[70] 赵惊涛,于彩霞,彭苏萍,等. 基于地震成像数据稀疏反演的不连续及非均质地质体检测方法[J]. 地球物理学报,2016,59(9):3408−3416.

ZHAO Jingtao,YU Caixia,PENG Suping,et al. Seismic sparse inversion method implemented on image data for detecting discontinuous and inhomogeneous geological features[J]. Chinese Journal of Geophysics,2016,59(9):3408−3416.

[71] ZHAO Jingtao,YU Caixia,PENG Suping,et al. Least–squares imaging of diffractions by solving a hybrid L1–L2 norm minimization problem[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2021,86(1):S59−S72.

[72] BLEISTEIN N,COHEN J K,STOCKWELL J W. Mathematics of multidimensional seismic imaging,migration and inversion[M]. Springer,2000.

[73] KLOKOV A,FOMEL S. Separation and imaging of seismic diffractions using migrated dip–angle gathers[J]. Geophysics,2012,77(6):S131−S143.

[74] LI Chuangjian,PENG Suping,LIN Peng,et al. Imaging diffractions using a double–order weight function[J]. Pure and Applied Geophysics,2022,179:1053−1067.

[75] LI Chuangjian,ZHAO Jingtao,PENG Suping,et al. Diffraction imaging using a mathematical morphological filter with a time–varying structuring element[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2021,86(3):S185−S196.

[76] ZHAO Jingtao,YU Caixia,PENG Suping,et al. 3D diffraction imaging method using low–rank matrix decomposition[J]. Geophysics,2020,85(1):S1−S10.

[77] LI Chuangjian,ZHAO Jingtao,PENG Suping,et al. Separating and imaging diffractions of seismic waves in the full–azimuth dip–angle domain[J]. Journal of Geophysics and Engineering,2020,17(2):339−356.

[78] FOMEL S. Time–migration velocity analysis by velocity continuation[J]. Geophysics,2003,68(5):1662−1672.

[79] MERZLIKIN D,FOMEL S. Analytical path–summation imaging of seismic diffractions[J]. Geophysics,2017,82(1):S51−S59.

[80] DECKER L,MERZLIKIN D,FOMEL S. Diffraction imaging and time–migration velocity analysis using oriented velocity continuation[J]. Geophysics,2017,82(2):U25−U35.

[81] LANDA E,FOMEL S,RESHEF M. Separation,imaging,and velocity analysis of seismic diffractions using migrated dip–angle gathers[C]//SEG Technical Program Expanded Abstracts. Houston:Society of Exploration Geophysicists,2008:2176–2180.

[82] XIE Xiaobi,WU Rushan. Extracting angle domain information from migrated wavefield[C]//SEG International Exposition and 72nd Annual Meeting. Salt Lake City,2002:1360–1363.

[83] DAFNI R,SYMES W W. Diffraction imaging by prestack reverse–time migration in the dip–angle domain[J]. Geophysical Prospecting,2017,65(Sup.1):295−316.

[84] MOORE G F,SHIPLEY T H. Character of the décollement in the Leg 131 area,Nankai Trough[J]. Unknown Journal,1993:73−82.

[85] BRANDSBERG–DAHL S,URSIN B,DE HOOP M V. Seismic velocity analysis in the scattering–angle/azimuth domain[J]. Geophysical Prospecting,2003,51(4):295−314.

[86] SCHOEPP A,LABONTÉ S,LANDA E. Multifocusing 3D diffraction imaging for detection of fractured zones in mudstone reservoirs:Case history[J]. Interpretation,2015,3(1):SF31−SF42.

[87] TYIASNING S,MERZLIKIN D,COOKE D,et al. A comparison of diffraction imaging to incoherence and curvature[J]. The Leading Edge,2016,35(1):86−89.

[88] 李勤,沈鸿雁,王鑫,等. 基于路径积分的叠后绕射波偏移成像[J]. 煤炭学报,2021,46(10):3298−3307.

LI Qin,SHEN Hongyan,WANG Xin,et al. Post–stack diffraction imaging based on pathintegral[J]. Journal of China Coal Society,2021,46(10):3298−3307.

[89] DECKER L,JANSON X,FOMEL S. Carbonate reservoir characterization using seismic diffraction imaging[J]. Interpretation,2014,3(1):SF21−SF30.

[90] KLOKOV A,PASTORE C,LORENZO D. Diffraction imaging for hydrocarbon identification in the Neuquen Basin,Argentina[C]//SEG Technical Program Expanded Abstracts. Houston:Society of Exploration Geophysicists,2017:3056–3061.

[91] SUN Zandong,HOU Xinye,ZHANG Dong,et al. Complex carbonate reservoir characterization using diffraction–imaging data set[C]//SEG Technical Program Expanded Abstracts. Houston:Society of Exploration Geophysicists,2017:986–990.

[92] 朱立彬. 碳酸盐岩缝洞型储层绕射波地震属性分析[D]. 北京:中国地质大学(北京),2019.

ZHU Libin. Seismic attribute analysis of diffraction wave of carbonate fractured reservoir[D]. Beijing:China University of Geosciences (Beijing),2019.

[93] 肖曦,周鹏,张益明,等. 基于绕射信息提取技术的断裂识别方法及应用[J]. 石油地球物理勘探,2021,56(5):1130−1136.

XIAO Xi,ZHOU Peng,ZHANG Yiming,et al. Research and application of fracture identification method based on diffraction information extraction technology[J]. Oil Geophysical Prospecting,2021,56(5):1130−1136.

[94] 杨婕. 基于深度学习的绕射波属性智能融合方法研究[D]. 北京:中国矿业大学(北京),2022.

YANG Jie. Research on intelligent fusion method of diffraction wave attributes based on depth learning[D]. Beijing:China University of Mining and Technology (Beijing),2022.

[95] KLEM–MUSATOV K. Theory of seismic diffractions[M]. SEG,Tulsa:Society of Exploration Geophysicists,1994.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.