•  
  •  
 

Coal Geology & Exploration

Abstract

Geological guarantee is the indispensable basis for the safe, efficient and green mining of coal mine. The primary objective of this paper is to present a detailed review of the construction progress of China’s geological guarantee system over the past three decades, covering the key aspects of its intention, basic theoretical research, and technological and equipment development. The statement outlines five complex technical problems faced by the geological guarantee system in the context of green and intelligent mining, which include the low level of intelligence in geological information collection and interpretation, the need to improve advance prediction reliability based on low exploration accuracy and low comprehensive research degree of static geological conditions, the challenge of using a single real-time online monitoring method for dynamic geological information and the lack of technical standards for disaster response evaluation, the low technical level of geological information management and multi-source heterogeneous information fusion, and the inadequacy of 3D geological modelling for achieving the required level of geological transparency in intelligent mining. The paper identifies the crucial areas in which the geological guarantee system of a coal mine must be studied to achieve accurate geological prediction and mine geological transparency in the future, highlighting the need for breakthroughs in fine geological exploration and accurate geological representation. The crucial areas are listed as follows: (1) The applied basic research of mine geophysical exploration should be strengthened constantly aiming at the establishment of the multi-parameter response template for the full-space geophysical field with mine geological characteristics; (2) Demonstration research should be conducted for the pilot of low-altitude unmanned aerial vehicles (UAVs) and intelligent robot for data collection in geological exploration and monitoring. (3) Study on the occurrence and distribution law of mine geological body and the deformation of overburden rock in the mining-affected area should be strengthened, to seek the method for precisely distinguishing the “geological anomaly” and to research on the theory and method of quantitative description and zoned comprehensive prediction and evaluation of intelligent mining geological conditions based on mine geology and engineering characteristics. (4) The transferring format and specifications for database construction of multi-source and multi-dimension heterogeneous geological data volume, as well as the quantitative evaluation method of geological transparency of working face, should be studied to develop the fusion-sharing and 3D visualization technology of multi-source heterogeneous geological information, and the integrated modeling and automatic updating technology of 3D geological geometry-attributes based on geological big data. At the same time, the training mode of hierarchical talents was put forward.

Keywords

intelligent mining, geological guarantee system, fine exploration, geological transparency, precise prediction, progress, prospect

DOI

10.12363/issn.1001-1986.22.07.0564

Reference

1.陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820.

CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handlethe crisis of coal industry in China under the vision of carbonneutrality[J]. Journal of China Coal Society, 2021,46(6) 1808-1820

2.谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197-2211.

XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7):2197-2211.

3.彭苏萍. 建立和发展我国煤矿高产高效矿井地质保障系统[C]//中国煤炭学会矿井地质专业委员会年会报告. 上海,1992.

4.彭苏萍. 中国煤矿高产高效矿井地质保障系统[J]. 河北煤炭,1999(增刊1):1-4.

PENG Suping. Geological assurance system of high yield and high efficiency coal mine in China[J]. Hebei Coal,1999(Sup.1):1-4.

5.程学丰,刘盛东,唐修义. 我国矿井地质工作的研究现状与展望[J]. 淮南工业学院学报,2002,22(增刊1):1-3.

CHENG Xuefeng, LIU Shengdong, TANG Xiuyi. Research status and prospect of mine geological work in China[J]. Journal of Huainan Institute of Technology,2002,22(Sup.1):1-3.

6.韩德馨,彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭,2002,28(2):5-9.

HAN Dexin,PENG Suping. Review and outlook for mine geological assurance system for China’s high-efficiency coal mines[J]. China Coal,2002,28(2):5-9.

7.彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.

PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficientmining[J]. Journal of China Coal Society, 2020, 45(7): 2331-2345.

8.国家发展和改革委员会,国家能源局,应急管理部,等. 关于加快煤矿智能化发展的指导意见[N]. 中国煤炭报,2020-03-05(002).

9.王佟,张博,王庆伟,等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探,2017,45(1):1-8.

WANG Tong,ZHANG Bo,WANG Qingwei,et al. Green coalresources in China:Concept,characteristics and assessment[J].Coal Geology & Exploration,2017,45(1):1-8.

10.国家市场监督管理总局,中国国家标准化管理委员会. 煤矿绿色矿山评价指标:GB/T 37767—2019[S]. 北京:中国标准出版社,2020.

11.袁亮,张农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1-8.

YUAN Liang, ZHANG Nong, KAN Jiaguang, et al. Theconcept,model and reserve forecast of green coal resources inChina[J]. Journal of China University of Mining & Technology,2018,47(1):1-8.

12.LI Huoyin. Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan Coalfield, northern China[J]. International Journal of Coal Geology,2001,47(2):101-113.

13.王恩营,刘明举,魏建平. 构造煤成因-结构-构造分类新方案[J]. 煤炭学报,2009,34(5):656-660.WANG Enying,LIU Mingju,WEI Jianping. New genetic-texture-structure classification system of tectonic coal[J]. Journal of China Coal Society,2009,34(5):656-660.

14.张子敏,吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘,2013,20(2):237-245.

15.姜波,琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业,2004,24(5):27-29.

JIANG Bo, JU Yiwen. Tectonic coal structure and its petrophysical features[J]. Natural Gas Industry,2004,24(5):27-29.

16.张妙逢,贾茜. 构造变形对煤储层孔隙结构与比表面积的影响研究[J]. 中国煤炭地质,2013,25(7):1-4.

ZHANG Miaofeng, JIA Qian. Impacts from tectonic deformation on coal reservoir pore geometry and specific surface[J].Coal Geology of China,2013,25(7):1-4.

17.张小兵,郇璇,张航,等. 不同煤体结构煤基活性炭微观结构与甲烷吸附性能[J]. 中国矿业大学学报,2017,46(1):155-161.

ZHANG Xiaobing,HUAN Xuan,ZHANG Hang,et al. Microstructure and methane adsorption of coal-based activated carbons with different coal body structures[J]. Journal of China University of Mining & Technology,2017,46(1):155-161.

18.郭东鑫,汪威,张华莲,等. 松藻矿区原生结构煤与构造煤物性差异研究[J]. 煤炭技术,2019,38(4):103-105.

GUO Dongxin,WANG Wei,ZHANG Hualian,et al. Study oncharacteristic differences of primary structured coal and structural coal in Songzao mining area[J]. Coal Technology, 2019,38(4):103-105.

19.姜波,李明,程国玺,等. 矿井构造预测及其在瓦斯突出评价中的意义[J]. 煤炭学报,2019,44(8):2306-2317.

JIANG Bo, LI Ming, CHENG Guoxi, et al. Mine geological structure prediction and its significance for gas outburst hazard evaluation[J]. Journal of China Coal Society, 2019, 44(8): 2306-2317.

20.姜波,秦勇,琚宜文,等. 构造煤化学结构演化与瓦斯特性耦合机理[J]. 地学前缘,2009,16(2):262-271.

JIANG Bo,QIN Yong,JU Yiwen,et al. The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J]. Earth Science Frontiers, 2009,16(2):262-271.

21.姜波,李明,屈争辉,等. 构造煤研究现状及展望[J]. 地球科学

JIANG Bo, LI Ming, QU Zhenghui, et al. Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science,2016,31(4):335-346.

22.贾建称,吴艳,吴敏杰,等. 碎软低渗煤层煤层气开发地质条件评价及工程部署优化[R]. 西安:中煤科工集团西安研究院有限公司,2020.

23.孙劲光,高天鹏. 地质断层三维建模的表达式方法[J]. 地球信息科学学报,2016,18(10):1322-1331.

SUN Jinguang, GAO Tianpeng. The research of expression method on geological fault modeling[J]. Journal of Geo-information Science,2016,18(10):1322-1331.

24.WANG Hongwei,WANG Zeliang,JIANG Yaodong,et al. New approach for the digital reconstruction of complex mine faults and its application in mining[J]. International Journal of Coal Science & Technology 2022,9:43.

25.贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32-44.

JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th Five-Year Plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32-44.

26.陈红影. 我国矿井水害的类型划分与水文结构模式研究[D].徐州:中国矿业大学,2019.

CHEN Hongying. Study on the type classification and hydrological structure model of mine water hazards in China[D].Xuzhou:China University of Mining & Technology,2019.

27.杨飞. 山西省老空突水的水文地质结构模式与致灾机制[D].徐州:中国矿业大学,2019.

YANG Fei. Goaf-water inrush models of hydrogeologic structure and its disaster-mechanism in Shanxi Province[D]. Xuzhou:China University of Mining & Technology,2019.

28.侯宪港,杨天鸿,李振拴,等. 山西省老空水害类型及主要特征分析[J]. 采矿与安全工程学报,2020,37(5):1009-1018.

HOU Xiangang,YANG Tianhong,LI Zhenshuan,et al. Typesand main characteristics of old goaf water disaster in Shanxi Province[J]. Journal of Mining & Safety Engineering, 2020,37(5):1009-1018.

29.武强,许珂,张维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341-1347.

WU Qiang,XU Ke,ZHANG Wei. Further research on“three maps-two predictions”method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society, 2016,41(6):1341-1347.

30.李超峰. 黄陇煤田综放采煤导水裂隙带高度经验公式[J]. 煤炭技术,2021,40(6):119-122.

LI Chaofeng. Formula for predicting height of water flowingfractured zone caused during fully-mechanized caving miningin Huanglong Coalfield[J]. Coal Technology, 2021, 40(6):119-122.

31.李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384-392.

LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(Sup.1):384-392.

32.曹海东. 煤层开采覆岩离层水体致灾机理与防控技术研究[D]. 北京:煤炭科学研究总院,2018.

CAO Haidong. Study on prevention & control technology and disaster-caused mechanism of bed separation water body in overburden strata during coal seam mining[D]. Beijing:China Coal Research Institute,2018.

33.张培森,朱慧聪,吴玉华,等. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报,2021,29(4):1057-1070.

ZHANG Peisen, ZHU Huicong, WU Yuhua, et al. State-of-the-art of mechanism of water inrush from bed separation and key technology of prevention and pre-control in China[J].Journal of Engineering Geology,2021,29(4):1057-1070.

34.虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1-8.

HU Weiyue, ZHAO Chunhu. Trilinear chart classificationmethod of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1-8.

35.陈晨. 乌审旗-横山地区中侏罗世沉积特征与控水规律研究[D]. 北京:煤炭科学研究总院,2018.

CHEN Chen. Study on sedimentary characteristics and water control laws of the middle Jurassic in Uxin Banner-Hengshan Region[D]. Beijing:China Coal Research Institute,2018.

36.王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449-2459.

WANG Yang,WU Qiang, DING Xiang, et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449-2459.

37.冯洁,侯恩科,王苏健,等. 陕北侏罗系沉积控水规律与沉积控水模式[J]. 煤炭学报,2021,46(5):1614-1629.

FENG Jie,HOU Enke,WANG Sujian,et al. Law and model of Jurassic sedimentary water control in northern Shaanxi Province[J]. Journal of China Coal Society, 2021, 46(5):1614-1629.

38.董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367-2375.

DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7) 2367-2375.

39.吴基文,沈书豪,葛春贵,等. 构造极复杂煤炭采区水文地质条件立体探查与综合评价[M]. 北京:科学出版社,2019.

40.王静雪,刘海松,邱梅. 煤层底板突水危险性评价的FDAHP-TOPSIS模型[J].采矿与岩层控制工程学报,2021,3(2):023528.

WANG Jingxue, LIU Haisong, QIU Mei. FDAHP-TOPSISmodel for evaluation of the water inrush risk from coal floors[J]. Journal of Mining and Strata Control Engineering,2021,3(2):023528.

41.胡彦博. 深部开采底板破裂分布动态演化规律及突水危险性评价[D]. 徐州:中国矿业大学,2020.

HU Yanbo. Dynamic evolution law of fracture distribution and water inrush risk assessment in deep mining coal seam floor[D].Xuzhou:China University of Mining & Technology,2020.

42.刘守强,武强,李哲,等. 多煤层底板单一含水层矿区突水变权脆弱性评价与应用[J]. 中国矿业大学学报,2021,50(3):587-597.

LIU Shouqiang,WU Qiang,LI Zhe,et al. Vulnerability evaluation and application of floor water inrush in mining area with multiple coal seams and single aquifer based on variable weight[J]. Journal of China University of Mining & Technology,2021,50(3):587-597.

43.袁超. 深部巷道围岩变形破坏机理与稳定性控制原理研究[D]. 湘潭:湖南科技大学,2017.

YUAN Chao. Research on the mechanism and stability controlof rock deformation and failure around deep tunnels[D]. Xiangtan:Hunan University of Science and Technology,2017.

44.袁永,屠世浩,陈忠顺,等. 薄煤层智能开采技术研究现状与进展[J]. 煤炭科学技术,2020,48(5):1-17.

YUAN Yong, TU Shihao, CHEN Zhongshun, et al. Current situation and development of intelligent mining technology for thin coal seams[J]. Coal Science and Technology,2020,48(5):1-17.

45.王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33-42.

WANG Guofa,PANG Yihui. Full-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society, 2018, 43(1):33-42.

46.王国法,庞义辉,任怀伟,等. 煤炭安全高效综采理论、技术与装备的创新和实践[J]. 煤炭学报,2018,43(4):903-913.

WANG Guofa, PANG Yihui, REN Huaiwei, et al. Coal safe and efficient mining theory,technology and equipment innovation practice[J]. Journal of China Coal Society, 2018, 43(4):903-913.

47.钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.

48.许家林. 岩层采动裂隙演化规律与应用[M]. 徐州:中国矿业大学出版社,2016.

49.许家林,钱鸣高,朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报,2005,24(5):787-791.

XU Jialin,QIAN Minggao,ZHU Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24(5):787-791.

50.许峰,靳德武,高振宇,等. 煤炭高强度重复采动下地下水资源漏失规律研究[J]. 煤炭科学技术,2022,50(11):131-139.

XU Feng, JIN Dewu, GAO Zhenyu, et al. Study on law of groundwater resources leakage under high intensity repeated mining[J]. Coal Science and Technology, 2022, 50(11):131-139.

51.屈庆栋,许家林,钱鸣高. 关键层运动对邻近层瓦斯涌出影响的研究[J]. 岩石力学与工程学报,2007,26(7):1478-1484.

QU Qingdong,XU Jialin,QIAN Minggao. Study on influencesof key strata movement on gas emissions of adjacent layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2007,[52]26(7):1478-1484.

52.乔伟,黄阳,袁中帮,等. 巨厚煤层综放开采顶板离层水形成机制及防治方法研究[J]. 岩石力学与工程学报,2014,33(10):2076-2084.

QIAO Wei,HUANG Yang,YUAN Zhongbang, et al. Formation and prevention of water inrush from roof bed separation with full-mechanized caving mining of ultra thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(10):2076-2084.53.许家林,秦伟,轩大洋,等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报,2020,45(1):35-43.

XU Jialin, QIN Wei, XUAN Dayang, et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2020,45(1):35-43.

54.QU Qingdong,XU Jialin,WU Renlun,et al. Three-zone characterisation of coupled strata and gas behavior in multi-seam mining[J]. International Journal of Rock Mechanics and Mining Sciences 2015,78:91-98.

55.宋子岭,范军富,祁文辉,等. 露天煤矿绿色开采技术与评价指标体系研究[J]. 煤炭学报,2016,41(增刊2):350-358.

SONG Ziling,FAN Junfu,QI Wenhui,et al. Study on the surface coal mine green mining technology and appraising index system[J]. Journal of China Coal Society, 2016, 41(Sup.2):350-358.

56.刘鹏. 露天煤矿绿色开采评价指标体系及建设路径研究[D].徐州:中国矿业大学,2020.LIU Peng. Study on evaluation index system and construction path of green mining in open-pit coal mine[D]. Xuzhou:China University of Mining & Technology,2020.

57.许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769.

XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.

58.郑怀昌,李明. 地下采空区危险性及其分析[J]. 矿山压力与顶板管理,2005(4):127-129.

ZHENG Huaichang, LI Ming. Risk analysis of underground goaf[J]. Ground Pressure and Strata Control,2005(4):127-129.

59.周亮. 髙瓦斯易自燃煤层釆空区遗煤自燃预警研究[D]. 淮南:安徽理工大学,2018.

ZHOU Liang. Study on gob coal spontaneous combustion early warning in high gassy and spontaneous combustion coal seam[D]. Huainan:Anhui Uiversity of Science & Technology,2018.

60.LI Chuangjian,PENG Suping,ZHAO Jingtao,et al. Diffraction imaging using an adaptive phase filter[J]. Geophysical Prospecting,2020,68(1):164-177.

61.LIU Qiannan,PENG Suping,ZHAO Jingtao,et al. 3D edge diffraction coefficients in the azimuth and emergence domain[J].Geophysics,2019,84(2):T73-T82.

62.陈优阔. 基于核方法的煤层厚度变化预测模型及应用研究[D]. 徐州:中国矿业大学,2016.

CHEN Youkuo. Study of prediction models and their applica-tions of the coal thickness change based on kernel method[D].Xuzhou:China University of Mining & Technology,2016

63.曾爱平,张嘉玮,任恩明,等. 基于VMD和SVM的煤厚预测方法研究[J]. 煤田地质与勘探,2021,49(6):243-250.

ZENG Aiping,ZHANG Jiawei,REN Enming, et al. Research on the coal thickness prediction method based on VMD and SVM[J]. Coal Geology & Exploration,2021,49(6):243-250.

64.杨震,芦俊,孟星浑,等. 薄煤层PP 波与PS波AVA地震响应特征[J]. 煤炭学报,2015,40(6):1435-1441.

YANG Zhen,LU Jun,MENG Xinghun,et al. PP- and PS-wave AVA response characteristics for thin coal seam[J]. Journal of China Coal Society,2015,40(6):1435-1441.

65.王远,崔若飞,孙学凯,等. 利用地震反演信息划分煤体结构[J]. 煤田地质与勘探,2011,39(4):69-73.

WANG Yuan,CUI Ruofei,SUN Xuekai, et al. Utilizing seismic inversion information in classifying coal structures[J]. Coal Geology & Exploration,2011,39(4):69-73.

66.孙斌,杨敏芳,孙霞,等. 基于地震AVO 属性的煤层气富集区预测[J]. 天然气工业,2010,30(6):15-18.

SUN Bin,YANG Minfang,SUN Xia,et al. Prediction of coalbed methane enrichment zones based on AVO attributes[J]. Natural Gas Industry,2010,30(6):15-18.

67.彭苏萍,杜文凤,殷裁云,等. 基于AVO反演技术的煤层含气量预测[J]. 煤炭学报,2014,39(9):1792-1796.

PENG Suping,DU Wenfeng,YIN Caiyun,et al. Coal-bed gas content prediction based on AVO inversion[J]. Journal of China Coal Society,2014,39(9) 1792-1796.

68.庄益明. 煤层小断层地震多属性精细解释方法研究[D]. 徐州:中国矿业大学,2018.

ZHUANG Yiming. Study on the fine interpretation method ofseismic multiattribute of small fault in coal seam[D]. Xuzhou:China University of Mining & Technology,2018.

69.廉洁,李松营,滕吉文,等. 槽波探测技术的多领域应用与试验[J]. 河南理工大学学报(自然科学版),2017,36(5):35-40.

LIAN Jie,LI Songying,TENG Jiwen,et al. Multi-field application and experiment of channel wave detection technology[J].Journal of Henan Polytechnic University (Natural Science),2017,36(5):35-40.

70.GUO Changfang, YANG Zhen,CHANG Shuai, et al. Preciseidentification of coal thickness by channel wave based on a hybrid algorithm[J]. Applied Sciences,2019,9(7):1493.

71.蒋锦朋. 基于弹性波全波形反演的煤层异常体成像研究[D].武汉:中国地质大学(武汉),2018.

JIANG Jinpeng. Imaging coal seam anomalies based on elasticfull waveform inversion[D]. Wuhan: China University ofGeosciences (Wuhan),2018.

72.王增玉,杨德义,曹志勇,等. 构造煤及夹矸对煤层AVO正演模拟结果影响分析[J]. 地球物理学进展,2018,33(2):754-759.

WANG Zengyu,YANG Deyi,CAO Zhiyong,et al. Analysis onthe influence of tectonic coal and parting on AVO forward modeling of coal seam[J]. Progress in Geophysics, 2018, 33(2):754-759.

73.姬广忠,吴荣新,张平松,等. 黏弹TI煤层介质3层模型Love槽波频散与衰减特征[J]. 煤炭学报,2021,46(2):566-577.

JI Guangzhong,WU Rongxin,ZHANG Pingsong,et al. Dispersion and attenuation characteristics of Love channel waves inthe three-layer model of viscoelastic TI coal seam media[J].Journal of China Coal Society,2021,46(2):566-577.

74.吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究[J]. 煤炭科学技术,2021:1-13 [2021-11-11]. DOI:10.13199/j.cnki.cst.2021-1016.

WU Guoqing, MA Yanlong. Research on the interpretationmethod of channel waves for various abnormal bodies in geologically transparent working faces[J]. Coal Science and Technology,2021:1-13 [2021-11-11]. DOI:10.13199/j.cnki.cst.2021-1016.

75.傅皓淳. 煤田槽波地震勘探中层析成像技术应用研究[D]. 北京:中国地质大学(北京),2015.

FU Haochun. Study on seismic tomography in in-seam seismicexploration in coal field[D]. Beijing: China University ofGeosciences (Beijing),2015.

76.滕娟. 基于地球物理测井的煤体结构预测:以沁水盆地南部煤储层为例[D]. 北京:中国地质大学(北京),2016.

TENG Juan. Identification of coal structures with the aid of geophysical logs:A case study of the southern Qinshui Basin[D].Beijing:China University of Geosciences (Beijing),2016.

77.李存磊,杨兆彪,孙晗森,等. 多煤层区煤体结构测井解释模型构建[J]. 煤炭学报,2020,45(2):721-730.

LI Cunlei,YANG Zhaobiao,SUN Hansen,et al. Constructionof a logging interpretation model for coal structure frommulti-coal seams area[J]. Journal of China Coal Society,2020,45(2):721-730.

78.岳建华,刘树才,李志聃. 巷道顶、底板电测深曲线的自动反演解释[J]. 中国矿业大学学报,1995,24(3):62-67.

YUE Jianhua,LIU Shucai,LI Zhidan. Automatic iterative inverse method of drift roof & floor sounding curves[J]. Journalof China University of Mining & Technology, 1995, 24(3):62-67.

79.岳建华,李志聃,刘世蕾. 层状介质中巷道底板电测深边界元法正演[J]. 煤炭学报,1998,23(4):347-351.

YUE Jianhua,LI Zhidan,LIU Shilei. Modeling of floor sounding in roadway in a layered medium by boundary element method[J]. Journal of China Coal Society,1998,23(4):347-351.

80.岳建华,刘树才. 矿井直流电法勘探[M]. 徐州:中国矿业大学出版社,2000.

81.岳建华,杨海燕,苏本玉,等. 矿井张量电阻率法理论基础研究[J]. 煤炭学报,2020,45(7):2464-2471.

YUE Jianhua, YANG Haiyan, SU Benyu, et al. Theoreticalfoundation of tensor measurement for mine resistivitymethod[J]. Journal of China Coal Society, 2020, 45(7):2464-2471.

82.蒋宗霖,于景邨,孙伟涛. 矿井瞬变电磁法低阻体的全空间响应影响研究[J]. 煤炭科学技术,2012,40(8):107-110.

JIANG Zonglin,YU Jingcun,SUN Weitao. Study on mine transient electromagnetic method affected to full space response oflow resistance body[J]. Coal Science and Technology, 2012,40(8):107-110.

83.李飞,程久龙,温来福,等. 矿井瞬变电磁法电阻率偏低原因分析与校正方法[J]. 煤炭学报,2018,43(7):1959-1964.

LI Fei,CHENG Jiulong,WEN Laifu,et al. Reason and correction of low resistivity problem in mine transient electro-magnetic method[J]. Journal of China Coal Society, 2018, 43(7):1959-1964.

84.吴信民,张振坤,徐剑波. 瞬变电磁法理论的探测深度问题[J].地球物理学进展,2015,30(3):1333-1336.

WU Xinmin,ZHANG Zhenkun,XU Jianbo. Theoretical depthof investigation of transient electromagnetic method[J]. Progress in Geophysics,2015,30(3):1333-1336.

85.杨海燕,岳建华. 矿井瞬变电磁法理论与技术研究[M]. 北京:科学出版社,2015.

86.李貅,薛国强. 瞬变电磁法拟地震偏移成像研究[M]. 北京:科学出版社,2013.

87.王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117.

WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mineroadways[J]. Coal Geology & Exploration, 2022, 50(1):109-117.

88.程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报, 2019, 44(8):2285-2295.

CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

89.陈晓红. 基于交叉梯度函数的重震同步联合反演方法研究[D]. 青岛:中国石油大学(华东),2013.

CHEN Xiaohong. Gravity and seismic simultaneous joint inversion method based on the cross-gradient functions[D]. Qingdao:China University of Petroleum (East China),2013.90.朴英哲. 多重地球物理数据交叉梯度联合反演研究及应用[D]. 长春:吉林大学,2015.PU Yingzhe. Research on crossgradient joint inversion of multiple geophysical data and its application[D]. Changchun: Jilin University,2015.

91.安林,韩保山,李鹏,等. 面向透明工作面的地质建模插值误差分析[J]. 煤田地质与勘探,2022,50(6):184-189.

AN Lin,HAN Baoshan,LI Peng,et al. Research on interpolation error analysis of geological modeling of intelligent working face[J]. Coal Geology & Exploration,2022,50(6):184-189.

92.孙东玲,孙海涛. 煤矿采动区地面井瓦斯抽采技术及其应用前景分析[J]. 煤炭科学技术,2014,42(6):49-52.

SUN Dongling,SUN Haitao. Application prospect analysis ongas drainage technology of surface well in mining area[J]. Coal Science and Technology,2014,42(6):49-52.

93.孙东玲,付军辉,孙海涛,等. 采动区瓦斯地面井破断防护研究及应用[J]. 煤炭科学技术,2018,46(6):17-23.

SUN Dongling, FU Junhui, SUN Haitao, et al. Study and application of gas surface well broken protection in miningarea[J]. Coal Science and Technology,2018,46(6):17-23.[93]

94.赵建国,赵江鹏,许超,等. 煤矿井下复合定向钻进技术研究与应用[J]. 煤田地质与勘探,2018,46(4):202-206.

ZHAO Jianguo,ZHAO Jiangpeng,XU Chao,et al. Compositedirectional drilling technology in underground coal mine[J].Coal Geology & Exploration,2018,46(4):202-206.

95.石智军,董书宁,杨俊哲,等. 煤矿井下3 000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1-7.

SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine[J]. Coal Geology & Exploration, 2019,47(6):1-7.

96.徐书荣,刘飞,梁道富,等. 底板梳状钻孔在碎软煤层瓦斯治理中的应用[J]. 探矿工程(岩土钻掘工程),2019,46(7):45-50.

XU Shurong, LIU Fei, LIANG Daofu, et al. Application ofcomb type directional drilling in broken-soft coal seam floor forgas control[J]. Exploration Engineering (Rock & Soil Drillingand Tunneling),2019,46(7):45-50.

97.王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21.

WANG Jianli,CHEN Dongdong, JIA Bingyi. Practice of gasdrainage by hydraulic fracturing of roof pectination boreholes inbroken soft coal seam in Hancheng Mining Area[J]. Coal Geology & Exploration,2018,46(4):17-21.

98.李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1-6.

LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in theresearch on drilling technology and equipment in coal miningareas of China[J]. Coal Geology & Exploration, 2019, 47(2):1-6.

99.廖姜男,姜楠,宋海涛,等. 基于嵌入式技术的全液压钻机参数监测软件设计[J]. 煤田地质与勘探,2019,47(2):13-19.

LIAO Jiangnan, JIANG Nan, SONG Haitao, et al. Design ofparameter monitoring software for full hydraulic drilling rigbased on embedded technology[J]. Coal Geology & Exploration,2019,47(2):13-19.

100.翁寅生,邬迪,鲁飞飞,等. 煤矿井下钻机远程控制系统设计[J]. 煤田地质与勘探,2019,47(2):20-26.

WENG Yinsheng,WU Di,LU Feifei, et al. Design of remotecontrol system of drilling rig in coal mines[J]. Coal Geology &Exploration,2019,47(2):20-26.

101.董洪波,范强,李坤,等. ZDY4500LFK全自动钻机开发与应用[J]. 煤田地质与勘探,2022,50(1):66-71.

DONG Hongbo,FAN Qiang,LI Kun,et al. Development andapplication of ZDY4500LFK full automatic drilling rig[J]. CoalGeology & Exploration,2022,50(1):66-71.

102.陈航. ZYWL-4000SY双履带全自动钻机优化设计[J]. 煤矿机械,2019,40(1):106-108.

CHEN Hang. Optimizing design of ZYWL-4000SY double-crawler fully-automatic drilling rig[J]. Coal Mine Machinery,2019,40(1):106-108.103.方鹏,姚克,王龙鹏,等. ZDY25000LDK智能化定向钻进装备关键技术研究[J]. 煤田地质与勘探,2022,50(1):72-79.

FANG Peng,YAO Ke,WANG Longpeng, et al. Research onkey technologies of the ZDY25000LDK intelligent directional

104.张幼振,范涛,阚志涛,魏宏超,陈洪岩. 煤矿巷道掘进超前钻探技术应用与发展[J]. 煤田地质与勘探,2021,49(5):286-293.

ZHANG Youzhen, FAN Tao, KAN Zhitao, WEI Hongchao,CHEN Hongyan. Application and development of advanceddrilling technology for coal mine roadway heading[J]. COALGEOLOGY & EXPLORATION,2021,49(5):286-293.

105.李江. 煤田高密度三维地震勘探数据采集高效资料整理方法[J]. 工程地球物理学报,2021,18(4):416-420.

LI Jiang. High efficiency method for high density 3D seismicdata acquisition in coal field[J]. Chinese Journal of EngineeringGeophysics,2021,18(4):416-420.

106.程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141.

CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.

107.金学良,王琦. 煤矿采区高密度三维地震勘探模式与效果[J].煤田地质与勘探,2020,48(6):1-7.

JIN Xueliang,WANG Qi. Pattern and effect of the high density3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):1-7.

108.侯泽明,杨德义. 山西煤矿采区高密度三维地震勘探综述[J].煤田地质与勘探,2020,48(6):15-24.

HOU Zeming,YANG Deyi. Summary of high density 3D seismic exploration in the mining districts of coal mines in Shanxi Province[J]. Coal Geology & Exploration,2020,48(6):15-24.

109.程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9.

CHENG Jianyuan,QIN Si,LU Bin,et al. The development ofseismic-while-mining detection technology in undergroundcoal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

110..王保利,程建远,金丹,等. 煤矿井下随掘地震震源特征及探测性能研究[J]. 煤田地质与勘探,2022,50(1):10-19.

WANG Baoli,CHENG Jianyuan,JIN Dan,et al. Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J]. Coal Geology & Exploration,2022,50(1):10-19.

111.张唤兰,王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探,2020,48(4):29-33.

ZHANG Huanlan,WANG Baoli. Waveform cross correlation- based imaging of underground seismic data while mining[J]. Coal Geology & Exploration,2020,48(4):29-33.

112.XUE Guoqiang,BAI Chaoying,YAN Shu,et al. Deep sounding TEM investigation method based on a modified fixed central-loop system[J]. Journal of Applied Geophysics, 2012, 76:23-32.

113.LI Hai, XUE Guoqiang,ZHAO Pan, et al. Inversion of arbitrary segmented loop source TEM data over a layered earth[J].Journal of Applied Geophysics,2016,128:87-95.

114.覃庆炎,罗威,周洪生. 中心回线瞬变电磁自适应正则化反演[J]. 科学技术与工程,2014,14(13):7-10.

115.QIN Qingyan,LUO Wei,ZHOU Hongsheng. Inversion display of ARIA used in in-loop transient electromagnetic sounding[J]. Science Technology and Engineering,2014,14(13):7-10.

CHEN Weiying, XUE Guoqiang, MUHAMMAD Y K, et al. Application of short-offset TEM (SOTEM) technique in mapping water-enriched zones of coal stratum, an example from East China[J]. Pure and Applied Geophysics, 2015, 172(6):1643-1651.

116.ZHOU Nannan, XUE Guoqiang, HOU Dongyang, et al.Short-offset grounded-wire TEM method for efficient detection of mined-out areas in vegetation-covered mountainous coalfields[J]. Exploration Geophysics,2017,48(4):374-382.

117.陈卫营,李海,薛国强,等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报,2017,60(9):3667-3676.

CHEN Weiying,LI Hai,XUE Guoqiang,et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics,2017,60(9):3667-3676.

118.ZHOU Nannan, HOU Dongyang, XUE Guoqiang. Effects of shadow and source overprint on grounded-wire transient electromagnetic response[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(8):1169-1173.

119.LI Hai,XUE Guoqiang,ZHOU Nannan,et al. Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer[J]. Pure and Applied Geophysics,2015,172(10):2917-2929.

120.HOU Dongyang,XUE Guoqiang,ZHOU Nannan,et al. Exploration of deep magnetite deposit under thick and conductive overburden with ex component of SOTEM: A case study in China[J]. Pure and Applied Geophysics, 2019, 176(2):857-871.

121.薛国强,李海,陈卫营,等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报,2021,46(1):77-85.

XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021,46(1):77-85.

122.程建远,王信文,张仲礼,等. 煤矿井下高分辨率地震探测技术[J]. 煤田地质与勘探,1997,25(5):14-16.

CHENG Jianyuan, WANG Xinwen, ZHANG Zhongli, et al.The technique of high resolution seismic prospecting in the underworkings[J]. Coal Geology & Exploration, 1997, 25(5):14-16.

123.程建远,李淅龙,张广忠,等. 煤矿井下地震勘探技术应用现状与发展展望[J]. 勘探地球物理进展,2009,32(2):96-100.

CHENG Jianyuan,LI Xilong,ZHANG Guangzhong,et al. Current status and outlook of seismic exploration applied underground in coal mine[J]. Progress in Exploration Geophysics,2009,32(2):96-100.

124.金丹,程建远,覃思,等. 煤矿井下地震勘探资料特殊处理方法及效果[J]. 煤田地质与勘探,2014,42(4):72-76.

JIN Dan,CHENG Jianyuan,QIN Si, et al. Special processing method and effect analysis of seismic data in underground coal mines[J]. Coal Geology & Exploration,2014,42(4):72-76.

125.苏晓云. 厚煤层内小断层的反射槽波探测技术及应用[J]. 煤田地质与勘探,2022,50(1):25-30.

SU Xiaoyun. Application of reflected in-seam wave detection for small faults in thick coal seams[J]. Coal Geology & Exploration,2022,50(1):25-30.

126.GE Maochen. Source location error analysis and optimization methods[J]. Journal of Rock Mechanics and Geotechnical Engineering,2012,4(1):1-10.

127.李楠,王恩元,GE Maochen,等. 微震震源定位可靠性综合评价模型[J]. 煤炭学报,2013,38(11):1940-1946.

LI Nan,WANG Enyuan,GE Maochen,et al. A comprehensive evaluation model for microseismic source location reliability[J]. Journal of China Coal Society,2013,38(11):1940-1946.

128.蔡武,窦林名,李振雷,等. 矿震震动波速度层析成像评估冲击危险的验证[J]. 地球物理学报,2016,59(1):252-262.

CAI Wu,DOU Linming,LI Zhenlei,et al. Verification of passive seismic velocity tomography in rock burst hazard assessment[J]. Chinese Journal of Geophysics,2016,59(1):252-262.

129.李绍红,朱建东,白兰英,等. 联合信息融合和解析方法的微震源定位研究[J]. 煤炭学报,2018,43(4):1065-1071.

LI Shaohong,ZHU Jiandong,BAI Lanying,et al. Study on micro-seismic source location with information fusion and analytical methods[J]. Journal of China Coal Society, 2018, 43(4):1065-1071.

130.吴荣新,刘盛东,张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报,2010,35(3):454-457.

WU Rongxin,LIU Shengdong,ZHANG Pingsong. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society,2010,35(3):454-457.

131.张平松,刘盛东,舒玉峰. 煤层开采覆岩破坏发育规律动态测试分析[J]. 煤炭学报,2011,36(2):217-222.

ZHANG Pingsong,LIU Shengdong,SHU Yufeng. Analysis on dynamic testing results of distortion and collapsing of the top rock by geophysical method during mining of coal seam[J].Journal of China Coal Society,2011,36(2):217-222.

132.姜春露,姜振泉,刘盛东,等. 多孔岩石化学注浆过程中视电阻率变化试验[J]. 中南大学学报(自然科学版),2013,44(10):4202-4207.

JIANG Chunlu, JIANG Zhenquan,LIU Shengdong, et al. Experiment on apparent resistivity changes in porous rock chemical grouting process[J]. Journal of Central South University (Science and Technology),2013,44(10):4202-4207.

133.胡玉超. 矿井无线电波透视技术探测模式研究[J]. 物探与化探,2018,42(1):213-219.

HU Yuchao. A study of detection mode of mine radio wave perspective technology[J]. Geophysical and Geochemical Exploration,2018,42(1):213-219.

134.刘百祥. 煤矿瓦斯富集区电磁波多频同步CT探测技术研究与应用[J]. 矿业安全与环保,2019,46(4):49-3.

LIU Baixiang. Research and application of electromagnetic wave multi-frequency synchronous CT detection technology in gas enrichment area of coal mine[J]. Mining Safety & Environmental Protection,2019,46(4):49-3.

贾茜,贾建称,张平卿,等. 高突矿井低抽巷穿层瓦斯抽采钻孔轨迹综合测控技术研究[J]. 中国煤炭地质,2019,31(9): 30-36.

JIA Qian, JIA Jiancheng, ZHANG Pingqing, et al. Study on comprehensive supervisory and control technology in high gas outburst hazard coalmine low drainage roadway crossing gas drainage borehole tracking[J]. Coal Geology of China, 2019, 31(9):30-36.

136.桑向阳,贾建称,贾茜,等.侧向电阻率视频成像测井技术在上向穿层瓦斯抽采孔中的应用研究:以平煤股份十三矿己15-17-11110工作面中间低抽巷穿层钻孔为例[J]. 中国煤炭地质, 2021,33(10):148-154.

SANG Xiangyang,JIA Jiancheng,JIA Qian,et al. Application study of lateral resistivity vision imaging well logging technology on upward crossing gas drainage boreholes:A case study of sixth15-17-11110 working face middle floor drainage road crossing borehole in Thirteenth Coalmine, Pingdingshan Coal Co. Ltd.[J]. Coal Geology of China,2021,33(10):148-154.

137.马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70-73.

MA Li, DUAN Zhonghui, ZHANG Jianjun, et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70-73.

138.刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628-2635.

LIU Zaibin,LIU Cheng,LIU Wenming, et al. Multi -attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628-2635.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.