•  
  •  
 

Coal Geology & Exploration

Abstract

As one of the key technologies for safe and efficient support of coalmine geology, the seismic technology, has gone through one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D), and progressed from resource exploration to mining area exploration, and from structural exploration to lithological exploration. The latest 4D seismic will further leapfrog from static detection to dynamic detection. Based on the concepts of time-space dimensions and the four seismic development stages, we propose three transitional stages from 1.5D (e.g., non-zero offset VSP), 2.5D (e.g., wide line 2D seismic exploration) to 3.5D (e.g., 3D seismic dynamic interpretation), and also present the time-space characteristics of the seven seismic stages, including 1D, 1.5D, 2D, 2.5D, 3D, 3.5D and 4D. Results show that: (1) The increase of coal seismic dimension from low to high, from space to space-time, makes the amount of underground information grow exponentially; the accuracy of solution to geological problems is improved significantly, which is the internal engine of continuous development of seismic technology for coals. (2) The accumulation of fundamental theoretical research, the upgrading of seismic exploration instruments, and the demand of coal mining technologies, are the external driving force for the continuous advancement of seismic technology. (3) The interdisciplinary research and technological integration over multiple disciplines, industries and sectors have accelerated the iteration and upgrading of seismic technology of coal field.

Keywords

coal seismic, time dimension, space dimension, 3D seismic, 4D seismic, technology advances

DOI

10.12363/issn.1001-1986.22.11.0834

Reference

[1] 王显政. 新中国60年铸就煤炭工业辉煌成就[J]. 中国煤炭工业,2009(11):4−6.

WANG Xianzheng. Brilliant achievements of coal industry in the 60 years of New China[J]. China Coal Industry,2009(11):4−6.

[2] 武喜尊,赵镨. 中国煤炭地震勘探技术发展[J]. 中国煤田地质,2003,15(6):51−55.

WU Xizun,ZHAO Pu. Coalfield seismic prospecting technology development in China[J]. Coal Geology of China,2003,15(6):51−55.

[3] 武喜尊. 中国煤炭高精细地震勘探技术的应用和发展[J]. 物探装备,2008,18(3):141−144.

WU Xizun. Application and development of high–precision seismic exploration technology of coal mine in China[J]. Equipment for Geophysical Prospecting,2008,18(3):141−144.

[4] 程建远. 中国煤矿采区地震勘探技术的回顾与展望[J]. 煤田地质与勘探,2004,32(增刊1):30−35.

CHENG Jianyuan. Review and expectation of seismic exploration applied in mining areas,China[J]. Coal Geology & Exploration,2004,32(Sup.1):30−35.

[5] 程建远,王寿全,宋国龙. 地震勘探技术的新进展与前景展望[J]. 煤田地质与勘探,2009,37(2):55−58.

CHENG Jianyuan,WANG Shouquan,SONG Guolong. The new development and foreground expectation of seismic exploration[J]. Coal Geology & Exploration,2009,37(2):55−58.

[6] 王怀洪,巩固,田育鑫. 东部煤炭数字地震勘探技术发展与关键问题讨论[J]. 地球物理学进展,2007,22(4):1320−1326.

WANG Huaihong,GONG Gu,TIAN Yuxin. The argumentation of coalfield digital seismic prospecting technology development and key problem in Eastern China[J]. Progress in Geophysics,2007,22(4):1320−1326.

[7] 魏子荣,杜兴亚,方正,等. 我国煤矿采区高分辨率地震勘探的成果[J]. 煤田地质与勘探,2000,28(1):55−60.

WEI Zirong,DU Xingya,FANG Zheng,et al. The results and prospect of high resolution seismic exploration in mine districts of China[J]. Coal Geology & Exploration,2000,28(1):55−60.

[8] 吴有信,王琦. 煤矿井下采区地震勘探技术现状与思考[J]. 煤炭科学技术,2010,38(1):101−106.

WU Youxin,WANG Qi. Present status and consideration on seismic exploration technology of mining district in underground mine[J]. Coal Science and Technology,2010,38(1):101−106.

[9] 程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024−2032.

CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024−2032.

[10] 崔若飞,孙学凯,崔大尉. 地震反演–煤田地震勘探的新进展[J]. 中国煤炭地质,2008,20(6):49−52.

CUI Ruofei,SUN Xuekai,CUI Dawei. Seismic inversion–new development in coal seismic survey[J]. Coal Geology of China,2008,20(6):49−52.

[11] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332−2336.

ZHAO Liming,CUI Ruofei. Application of digital high–density seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332−2336.

[12] 张兴平,王秀荣. 煤炭地下气化区高密度三维地震勘探技术研究[J]. 中国煤炭地质,2010,22(8):1−4.

ZHANG Xingping,WANG Xiurong. A study on high density 3D seismic prospecting technology used in underground coal gasification[J]. Coal Geology of China,2010,22(8):1−4.

[13] DU Wenfeng,PENG Suping. 4D seismic data acquisition method during coal mining[J]. Journal of Geophysics and Engineering,2014,11(3):1−7.

[14] ZHANG Xianxu,MA Jinfeng,LI Lin. Monitoring of coal–mine goaf based on 4D seismic technology[J]. Applied Geophysics,2020,17(1):54−66.

[15] 谢明道. VSP可重复性炮井高能高频炸药震源的试验[J]. 石油地球物理勘探,1989,24(4):469−476.

XIE Mingdao. The experiment of powerful high–frequency explosive VSP source in a reusable shot hole[J]. Oil Geophysical Prospecting,1989,24(4):469−476.

[16] 蔡志东. 井中地震技术:连接多种油气勘探方法的桥梁[J]. 石油地球物理勘探,2021,56(4):922−934.

CAI Zhidong. Borehole seismic:A bridge connecting multiple oil and gas exploration methods[J]. Oil Geophysical Prospecting,2021,56(4):922−934.

[17] 梁继刚,邓振琦. 刘庄区精查勘探的效果和经验[J]. 煤田地质与勘探,1988,16(6):1−4.

LIANG Jigang,DENG Zhenqi. Effect and experience of intensive exploration in Liuzhuang District[J]. Coal Geology & Exploration,1988,16(6):1−4.

[18] 魏荣科,张晓翼. 山西朔南地震宽线工作方法研究[J]. 中国煤田地质,1992,4(1):63−68.

WEI Rongke,ZHANG Xiaoyi. Study on the wide line method of Shuonan seismic in Shanxi Province[J]. Coal Geology of China,1992,4(1):63−68.

[19] 马在田. 三维地震勘探方法[M]. 北京:石油工业出版社,1989.

[20] 黑龙江省煤田地质勘探公司. 地震方法在伊敏煤田综合勘探中的效果[J]. 煤田地质与勘探,1978,6(1):1−6.

Heilongjiang Coalfield Geological Exploration Company. Effect of seismic method in comprehensive exploration of Yimin Coalfield[J]. Coal Geology & Exploration,1978,6(1):1−6.

[21] 张威,王怀洪. 试论中国东部地区煤矿采区地震勘探[J]. 中国煤田地质,1997,9(增刊1):21−24.

ZHANG Wei,WANG Huaihong. Trial discussion on seismic exploration in mining area,eastern China[J]. Coal Geology of China,1997,9(Sup.1):21−24.

[22] 张爱敏. 采区高分辨率三维地震勘探研究与应用[J]. 煤炭学报,1996,21(4):348−352.

ZHANG Aimin. Study and application of high resolution 3D seismic exploration in mining section[J]. Journal of China Coal Society,1996,21(4):348−352.

[23] 孔凡铭. 高分辨率地震综合勘探在兴隆庄煤矿的应用效果[J]. 煤田地质与勘探,1992,20(2):57−59.

KONG Fanming. Application effect of high resolution seismic comprehensive exploration in Xinglongzhuang Coal Mine[J]. Coal Geology & Exploration,1992,20(2):57−59.

[24] 赵镨. 高分辨地震勘探技术是探测煤矿地质异常体的有效手段[J]. 中国煤田地质,1999,11(增刊1):86−90.

ZHAO Pu. An effective means to detect geological anomalies in coal mines by high resolution seismic exploration technology[J]. Coal Geology of China,1999,11(Sup.1):86−90.

[25] 陈昕. 两淮煤矿采区地震勘探技术发展述评[J]. 中国煤田地质,2007,19(5):58−61.

CHEN Xin. A commentary on winning district seismic prospecting technical development in Huainan–Huaibei mining area[J]. Coal Geology of China,2007,19(5):58−61.

[26] 彭苏萍,袁亮. 淮南煤矿三维地震勘探技术应用与效果[J]. 安徽地质,2011,21(2):95−99.

PENG Suping,YUAN Liang. Research and achievements of three dimensional seismic prospecting technologies in Huainan coal mines[J]. Geology of Anhui,2011,21(2):95−99.

[27] 张炳光,孙茂也. 淮南矿区高分辨率地震勘探成果与验证[J]. 中国煤田地质,1999,11(增刊1):4−7.

ZHANG Bingguang,SUN Maoye. High resolution seismic exploration results and verification in Huainan mining area[J]. Coal Geology of China,1999,11(Sup.1):4−7.

[28] 张建军,徐礼贵,黄元溢,等. 一次高密度全方位煤矿三维地震采集探索:2015年物探技术研讨会[C]//宜昌:中国石油学会石油物探专业委员会,2015:147–150.

[29] 杨臣明. 全数字高密度煤矿采区三维地震技术研究与实践[J]. 中国煤炭地质,2014,26(3):46−52.

YANG Chenming. All digital high density coalmine winning district 3D seismic prospecting technology research and practices[J]. Coal Geology of China,2014,26(3):46−52.

[30] 程建远,王千遥,朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探,2020,48(6):25−32.

CHENG Jianyuan,WANG Qianyao,ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):25−32.

[31] 程建远,何文欣,朱书阶. 三维地震资料的精细解释技术[J]. 煤田地质与勘探,2001,29(6):55−58.

CHENG Jianyuan,HE Wenxin,ZHU Shujie. The technique of high resolution interpretation for 3D seismic data[J]. Coal Geology & Exploration,2001,29(6):55−58.

[32] 崔若飞,孙学凯,崔大尉. 煤矿三维地震数据动态解释技术[J]. 煤田地质与勘探,2008,36(6):67−69.

CUI Ruofei,SUN Xuekai,CUI Dawei. 3D seismic dynamic interpretation technique for coal mine[J]. Coal Geology & Exploration,2008,36(6):67−69.

[33] 凌云,黄旭日,孙德胜,等. 3.5D地震勘探实例研究[J]. 石油物探,2007,46(4):339−352.

LING Yun,HUANG Xuri,SUN Desheng,et al. Case study for 3.5D seismic exploration[J]. Geophysical Prospecting for Petroleum,2007,46(4):339−352.

[34] 孙德胜,凌云,夏竹,等. 3.5维地震勘探方法及其应用研究[J]. 石油物探,2010,49(5):460−471.

SUN Desheng,LING Yun,XIA Zhu,et al. Methodology and application of 3.5D seismic exploration[J]. Geophysical Prospecting for Petroleum,2010,49(5):460−471.

[35] 程建远. 三维地震资料微机解释性处理技术[M]. 北京:石油工业出版社,2002.

[36] 邓辉,吕威亮. 四维地震及在油藏监测中的应用实例[J]. 石油物探译丛,1998(2):38−41.

DENG Hui,LYU Weiliang. 4D seismic and its application in reservoir monitoring[J]. Geophysical Prospecting for Petroleum Translation Cluster,1998(2):38−41.

[37] 易维启,王家林. 油气藏地球物理监测的基础及其方法探讨[J]. 同济大学学报,2000,28(6):711−716.

YI Weiqi,WANG Jialin. Basis and methods research of oil and gas pool geophysical detection[J]. Journal of Tongji University,2000,28(6):711−716.

[38] 李琳,马劲风,王浩璠,等. 典型油藏CO2地质封存中四维地震正演模型研究[J]. 地球物理学进展,2018,33(6):2383−2393.

LI Lin,MA Jinfeng,WANG Haofan,et al. Study of 4D seismic forward model for CO2 sequestration in typical reservoir[J]. Progress in Geophysics,2018,33(6):2383−2393.

[39] 辛坤烈. 四维地震技术在SAGD蒸汽腔监测中的应用[J]. 石油地球物理勘探,2019,54(4):882−890.

XIN Kunlie. Time–lapse seismic in the steam chamber monitoring of SAGD[J]. Oil Geophysical Prospecting,2019,54(4):882−890.

[40] 苑昊,刘佳朋,姜在兴. 煤矿采空区四维地震特征分析及识别方法:以淮南煤田张集矿区为例[J]. 现代地质,2021,35(4):1018−1023.

YUAN Hao,LIU Jiapeng,JIANG Zaixing. 4D seismic characteristics in coal mine gobs:A case study from the Zhangji Coal Mine in Huainan Coalfield[J]. Geoscience,2021,35(4):1018−1023.

[41] 高远,赵伟,李红. 煤矿采空区四维地震勘探技术研究[J]. 合肥工业大学学报(自然科学版),2009,32(9):1391−1394.

GAO Yuan,ZHAO Wei,LI Hong. Research on the method of four−dimensional seismic survey for the gob area in coal mines[J]. Journal of Hefei University of Technology,2009,32(9):1391−1394.

[42] 张昭,殷全增. 不同年限采空区下地震勘探效果实例研究[J]. 煤田地质与勘探,2021,49(6):237−242.

ZHANG Zhao,YIN Quanzeng. Case study on the effects of seismic exploration beneath the goafs of different ages[J]. Coal Geology & Exploration,2021,49(6):237−242.

[43] 袁峰,申涛,谢晓深,等. 基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J]. 煤炭学报,2021,46(10):3234−3244.

YUAN Feng,SHEN Tao,XIE Xiaoshen,et al. Application of deep learning–based seismic multi–attribute fusion technology in the detection of water conducting fissure zone[J]. Journal of China Coal Society,2021,46(10):3234−3244.

[44] 刘震,王玉涛,刘小平,等. 深部条带开采覆岩“三带”探测及量化评判[J]. 煤田地质与勘探,2020,48(3):17−23.

LIU Zhen,WANG Yutao,LIU Xiaoping,et al. Exploration and quantitative evaluation of overburden strata“three zones” in deep strip mining[J]. Coal Geology & Exploration,2020,48(3):17−23.

[45] 刘雯林,张颖. 石油地球物理发展历程回顾、启示及对策建议[J]. 石油科技论坛,2003(10):42−52.

LIU Wenlin,ZHANG Ying. Review,enlightenment and suggestions on the development of petroleum geophysics[J]. Petroleum Science and Technology Forum,2003(10):42−52.

[46] ONGKIEHONG L. A changing philosophy in seismic data acquisition[J]. First Break,1988,6(9):281−284.

[47] 王文良. 从428XL的推出看地震数据采集系统的新发展[J]. 物探装备,2006,16(1):1−15.

WANG Wenliang. New development of seismic acquisition system after 428XL prompting[J]. Equipment for Geophysical Prospecting,2006,16(1):1−15.

[48] 贾艳芳,彭珣. 从现实物探技术要求与当前数字地震仪差距看地震仪器的发展[J]. 物探装备,2013,23(4):221−225.

JIA Yanfang,PENG Xun. The developing forecasting about seismic instrument based on the current geophysical requirements and the digital seismograph gap[J]. Equipment for Geophysical Prospecting,2013,23(4):221−225.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.