Coal Geology & Exploration
Abstract
The treatment and resourceful utilization of mine water is an important thrust to achieve the dual goals of high-quality development of coal industry and ecological civilization construction in mining area. The decision to effectively treat and use mine water as an unconventional water resource will inevitably be made in the future due to the restrictions of a global water resource deficit and ecological environment protection. From the standpoint of the quality features of mine water in various mining sites, the formation mechanism and evaluation techniques of mine water quality were completely detailed here. Meanwhile, there were two stages in the establishment of mine water quality: water-rock interaction in aquifer and water-rock interaction in goaf. Additionally, systematically examined domestic and foreign characteristics of treatment systems for mine water containing suspended solids, highly mineralized mine water, acidic mine water and mine water containing special components. The new technologies for efficient cyclone purification of mine water including suspended solids, bipolar membrane and membrane distillation treatment of high-mineralized mine water, and built wetland treatment of acidic mine water were all vehemently discussed. The means of resourceful usage of mine water at home and abroad, including industrial production water, ecological water utilization, domestic water and heat energy utilization, were based on the summary of the current situation of mine water resource utilization at home and abroad. Finally, the problems and scientific considerations of mine water treatment and resource utilization in China’s coal mining areas are put forward, and concept of mine water treatment and resource utilization is established. Moreover, the technological research and development for treatment and resourceful utilization of mine water was promoted constantly to improve the comprehensive utilization rate of mine water resource, so as to solve the contradiction between supply and demand of water resources in coal mining area and realize the coordinated development of social and economic growth, exploitation of coal resource and ecological civilization construction of mining area.
Keywords
water quality characteristics, water quality formation mechanism, mine water treatment, resource utilization, domestic and foreign progress
DOI
10.12363/issn.1001-1986.22.12.0923
Recommended Citation
WANG Hao, DONG Shuning, SHANG Hongbo,
et al.
(2023)
"Domestic and foreign progress of mine water treatment and resource utilization,"
Coal Geology & Exploration: Vol. 51:
Iss.
1, Article 21.
DOI: 10.12363/issn.1001-1986.22.12.0923
Available at:
https://cge.researchcommons.org/journal/vol51/iss1/21
Reference
[1] 武强,涂坤. 我国发展面临能源与环境的双重约束分析及对策思考[J]. 科学通报,2019,64(15):1535−1544.
WU Qiang,TU Kun. Analysis on the dual constraints of energy and environment to the development of China and countermeasures[J]. Chinese Science Bulletin,2019,64(15):1535−1544.
[2] WOLKERSDORFER C,BOWELL R. Contemporary reviews of mine water studies in Europe[J]. Mine Water and the Environment,2004,23:161.
[3] 何绪文,张晓航,李福勤,等. 煤矿矿井水资源化综合利用体系与技术创新[J]. 煤炭科学技术,2018,46(9):4−11.
HE Xuwen,ZHANG Xiaohang,LI Fuqin,et al. Comprehensive utilization system and technical innovation of coal mine water resources[J]. Coal Science and Technology,2018,46(9):4−11.
[4] GLOVER H G. Mine water pollution:An overview of problems and control strategies in the United Kingdom[J]. Water Science & Technology,1983,15(2):59−70.
[5] 孙亚军,徐智敏,李鑫,等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.
SUN Yajun,XU Zhimin,LI Xin,et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.
[6] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.
WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636.
[7] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
[8] 顾大钊,李庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18.
GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18.
[9] FENG Qiyan,LI Ting,QIAN Bin,et al. Erratum to:Chemical characteristics and utilization of coal mine drainage in China[J]. Mine Water and the Environment,2014,33(3):287−288.
[10] 何绪文,杨静,邵立南,等. 我国矿井水资源化利用存在的问题与解决对策[J]. 煤炭学报,2008,33(1):63−66.
HE Xuwen,YANG Jing,SHAO Linan,et al. Problem and countermeasure of mine water resource regeneration in China[J]. Journal of China Coal Society,2008,33(1):63−66.
[11] 崔玉川,曹昉. 煤矿矿井水处理利用工艺技术与设计[M]. 北京:化学工业出版社,2016.
[12] 刘勇,孙亚军. 煤矿矿井水资源化技术探讨[J]. 能源技术与管理,2008(1):73−75.
LIU Yong,SUN Yajun. The discussion of resourceful technology in mine water[J]. Energy Technology and Management,2008(1):73−75.
[13] TIWARI A K,SINGH P K,MAHATO M K. Environmental geochemistry and a quality assessment of mine water of the West Bokaro Coalfield,India[J]. Mine Water and the Environment,2016,35(4):525−535.
[14] NAIDU G,RYU S,THIRUVENKATACHARI R,et al. A critical review on remediation,reuse,and resource recovery from acid mine drainage[J]. Environmental Pollution,2019,247:1110−1124.
[15] 杨静,李福勤,邵立南,等. 矿井水中悬浮物特征及其净化关键技术[J]. 辽宁工程技术大学学报(自然科学版),2008,27(3):458−460.
YANG Jing,LI Fuqin,SHAO Linan,et al. Discussion on the characteristics of SS in mine water and the key technique of purification[J]. Journal of Liaoning Technical University (Natural Science),2008,27(3):458−460.
[16] 靳德武,王甜甜,赵宝峰,等. 宁东煤田东北部高矿化度地下水分布特征及形成机制[J]. 煤田地质与勘探,2022,50(7):118−127.
JIN Dewu,WANG Tiantian,ZHAO Baofeng,et al. Distribution characteristics and formation mechanism of high salinity groundwater in northeast Ningdong Coalfield[J]. Coal Geology & Exploration,2022,50(7):118−127.
[17] 王甜甜,靳德武,杨建. 内蒙古某矿矿井水重金属污染特征及来源分析[J]. 煤田地质与勘探,2021,49(5):45−51.
WANG Tiantian,JIN Dewu,YANG Jian. Heavy metal pollution characteristics and source analysis of water drainage from a mine in Inner Mongolia[J]. Coal Geology & Exploration,2021,49(5):45−51.
[18] 郭洋楠,杨俊哲,张政,等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水–岩作用机制[J]. 煤炭学报,2021,46(增刊2):948−959.
GUO Yangnan,YANG Junzhe,ZHANG Zheng,et al. Hydrogen and oxygen isotope characteristics of mine water in Shendong mine area and water–rock reactions mechanism of the formation of high–fluoride mine water[J]. Journal of China Coal Society,2021,46(增刊2):948−959.
[19] WOLKERSDORFER C. Hydrogeochemistry of mine water[M]. Heidelberg:Springer Berlin Heidelberg,2008:9–36.
[20] 杨建,刘洋,方刚. 煤矿水文地质勘探中水文地球化学判别标准的构建[J]. 煤田地质与勘探,2018,46(1):92−96.
YANG Jian,LIU Yang,FANG Gang. Construction of hydrogeochemistry criteria in hydrogeological exploration in coal mines[J]. Coal Geology & Exploration,2018,46(1):92−96.
[21] 孙亚军,张莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.
SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi–field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.
[22] 王甜甜,薛建坤,尚宏波,等. 蒙陕接壤区矿井水中氟的污染特征及形成机制[J]. 煤炭学报,2022,47(11):4127−4138.
WANG Tiantian,XUE Jiankun,SHANG Hongbo,et al. Fluorine pollution characteristics and formation mechanism of mine water in Shaanxi and Inner Mongolia contiguous area[J]. Journal of China Coal Society,2022,47(11):4127−4138.
[23] 汤玉强,李清伟,左婉璐,等. 内梅罗指数法在北戴河国家湿地公园水质评价中的适用性分析[J]. 环境工程,2019,37(8):195−199.
TANG Yuqiang,LI Qingwei,ZUO Wanlu,et al. Analysis of applicability of Nemerow index method in evaluation of water quality of Beidaihe National Wetland Park[J]. Environmental Engineering,2019,37(8):195−199.
[24] 卢文喜,李迪,张蕾,等. 基于层次分析法的模糊综合评价在水质评价中的应用[J]. 节水灌溉,2011(3):43−46.
LU Wenxi,LI Di,ZHANG Lei,et al. Application of fuzzy comprehensive evaluation based on AHP in water quality evaluation[J]. Water Saving Irrigation,2011(3):43−46.
[25] 孔庆祥. 基于GIS与BP神经网络耦合矿井水害评价[J]. 能源与环保,2017,39(11):101−103.
KONG Qingxiang. Evaluation of water inrush in mining based on coupling technique of GIS and BP neural network[J]. China Energy and Environmental Protection,2017,39(11):101−103.
[26] 董东林,李祥,林刚,等. 突水水源的独立性权–模糊可变理论识别模型[J]. 煤田地质与勘探,2019,47(5):48−53.
DONG Donglin,LI Xiang,LIN Gang,et al. Identification model of the independence right-fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration,2019,47(5):48−53.
[27] 郑利兵,佟娟,魏源送,等. 磁分离技术在水处理中的研究与应用进展[J]. 环境科学学报,2016,36(9):3103−3117.
ZHENG Libing,TONG Juan,WEI Yuansong,et al. The progress of magnetic separation technology in water treatment[J]. Acta Scientiae Circumstantiae,2016,36(9):3103−3117.
[28] 曹兴民,丁坚平,杨绍萍,等. 浅析贵州毕节地区煤矿矿井水的资源化与综合利用[J]. 能源与环境,2010(2):89−91.
CAO Xingmin,DING Jianping,YANG Shaoping,et al. A brief analysis on the resource utilization and comprehensive utilization of mine water in Bijie area of Guizhou Province[J]. Energy and Environment,2010(2):89−91.
[29] 范立民,仵拨云,向茂西,等. 我国西部保水采煤区受保护烧变岩含水层研究[J]. 煤炭科学技术,2016,44(8):1−6.
FAN Limin,WU Boyun,XIANG Maoxi,et al. Study on protective burnt rock aquifer in water preserved coal mining area of western China[J]. Coal Science and Technology,2016,44(8):1−6.
[30] 葛光荣,吴一平,张全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术,2021,49(3):208−214.
GE Guangrong,WU Yiping,ZHANG Quan. Research on technology and process for moderate desalination of high–salinity mine water by nanofiltration[J]. Coal Science and Technology,2021,49(3):208−214.
[31] 麦正军,赵志伟,彭伟,等. 苦咸水淡化工艺的应用研究进展[J]. 兵器装备工程学报,2017,38(1):174−177.
MAI Zhengjun,ZHAO Zhiwei,PENG Wei,et al. Progress in investigation and application of brackish water desalination technology[J]. Journal of Ordnance Equipment Engineering,2017,38(1):174−177.
[32] 侯立安,刘晓芳. 纳滤水处理应用研究现状与发展前景[J]. 膜科学与技术,2010,30(4):1−7.
HOU Li’an,LIU Xiaofang. Research progress and development prospects of nanofiltration membrane technology to water treatment[J]. Membrane Science and Technology,2010,30(4):1−7.
[33] 靳德武,葛光荣,张全,等. 高矿化度矿井水节能脱盐新技术[J]. 煤炭科学技术,2018,46(9):12−18.
JIN Dewu,GE Guangrong,ZHANG Quan,et al. New energy−desalination technology of highly−ized mine water[J]. Coal Science and Technology,2018,46(9):12−18.
[34] KARPENKO T,KOVALEV N,SHRAMENKO V,et al. Investigation of transport processes through ion–exchange membranes used in the production of amines from their salts using bipolar electrodialysis[J]. Membranes,2022,12(11):1126.
[35] 顾大钊,彭苏萍,袁亮,等. 我国矿井水保护利用战略与工程科技[M]. 北京:科学出版社,2022.
[36] 郭强,李井峰,刘兆峰,等. 高矿化度矿井水膜蒸馏处理研究[J/OL]. 煤炭学报,2023:1–8 [2023-01-11]. DOI:10.13225/j. cnki. jccs. 2022.1253.
GUO Qiang,LI Jingfeng,LIU Zhaofeng,et al. Study on membrane distillation treatment of high–salinity mine water[J/OL]. Journal of China Coal Society,2023:1−8 [2023-01-11]. DOI:10.13225/j.cnki.jccs.2022.1253.
[37] 梁浩乾. 鱼洞河流域酸性矿井水被动处理实验研究[D]. 徐州:中国矿业大学,2019.
LIANG Haoqian. Research on passive treatment of acid mine drainage in Yudong River Basin[D]. Xuzhou:China University of Mining and Technology,2019.
[38] 刘冬,张慧泽,徐梦佳. 我国人工湿地污水处理系统的现状探析及展望[J]. 环境保护,2017,45(4):25−28.
LIU Dong,ZHANG Huize,XU Mengjia. Analysis and prospects on the situations of constructed wetlands in China[J]. Environmental Protection,2017,45(4):25−28.
[39] MACHADO A I,BERETTA M,FRAGOSO R,et al. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil[J]. Journal of Environmental Management,2017,187:560−570.
[40] LEGUIZAMO M A O,GOMEZ W D F,SARMIENTO M C G. Native herbaceous plant species with potential use in phytoremediation of heavy metals,spotlight on wetlands:A review[J]. Chemosphere,2017,168:1230−1247.
[41] SUNDARAM C S,VISWANATHAN N,MEENAKSHI S. Uptake of fluoride by nano–hydroxyapatite/chitosan,a bioinorganic composite[J]. Bioresource Technology,2008,99(17):8226−8230.
[42] 李喜林,于晓婉,李磊,等. 蛇纹石负载羟基磷灰石对矿区地下水中氟、铁和锰的动态吸附性能[J]. 煤炭学报,2021,46(3):1056−1066.
LI Xilin,YU Xiaowan,LI Lei,et al. Dynamic adsorption of fluoride,iron and manganese in underground water of mining area by Srp/HAP[J]. Journal of China Coal Society,2021,46(3):1056−1066.
[43] 王麒. 河南平顶山煤田地温异常的构造制约及放射性核素迁移转化机理[D]. 北京:中国科学院大学,2016.
WANG Qi. Tectonic constraints of geothermal anomaly and mechanism of radionuclide migration and transformation in Pingdingshan Coalfield,Henan Province[D]. Beijing:University of Chinese Academy of Sciences,2016.
[44] 袁航,石辉. 矿井水资源利用的研究进展与展望[J]. 水资源与水工程学报,2008,19(5):50−57.
YUAN Hang,SHI Hui. Research progress and prospect of coal mine water resource utilization[J]. Journal of Water Resources & Water Engineering,2008,19(5):50−57.
[45] 闫佳伟,王红瑞,赵伟静,等. 我国矿井水资源化利用现状及前景展望[J]. 水资源保护,2021,37(5):117−123.
YAN Jiawei,WANG Hongrui,ZHAO Weijing,et al. Current status and prospect of mine water reutilization in China[J]. Water Resources Protection,2021,37(5):117−123.
[46] BATTY L C,YOUNGER P L. The use of waste materials in the passive remediation of mine water pollution[J]. Surveys in Geophysics,2004,25(1):55−67.
[47] CHAULYA S K. Water resource development study for a mining region[J]. Water Resources Management,2003,17(4):297−316.
[48] 刘爽. 煤矿矿井水处理技术及资源化综合利用[J]. 资源节约与环保,2022(8):104−107.
LIU Shuang. Coal mine water treatment technology and comprehensive utilization of resources[J]. Resources Economization & Environment Protection,2022(8):104−107.
[49] 邵立南. 矿井水井下处理与复用技术研究[D]. 北京:中国矿业大学(北京),2009.
SHAO Linan. Study on the technology for in situ treatment and utilization of underground mine water[D]. Beijing:China University of Mining and Technology (Beijing),2009.
[50] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.
SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.
[51] 苗立永,王文娟. 高矿化度矿井水处理及分质资源化综合利用途径的探讨[J]. 煤炭工程,2017,49(3):26−28.
MIAO Liyong,WANG Wenjuan. Discussion on treatment and graded comprehensive utilization methods for high–salinity mine water[J]. Coal Engineering,2017,49(3):26−28.
[52] RIMAWI O,JIRIES A,ZUBI Y,et al. Reuse of mining wastewater in agricultural activities in Jordan[J]. Environment,Development and Sustainability,2009,11(4):695−703.
[53] Environmental Resources Management (ERS). Newmont sustainability report[R]. Washington,D C,2007.
[54] LEVY V,FABRE R,GOEBEL B,et al. Water use in the mining industry:Threats and opportunities[M]. Carlton:Australasian Institute of Mining and Metallurgy Publication Series,2006:289–295.
[55] GUNSON A J,KLEIN B,VEIGA M,et al. Reducing mine water requirements[J]. Journal of Cleaner Production,2012,21(1):71−82.
[56] KULIK L. Garzweiler II–Implementation of a complex project[J]. World of Mining–Surface & Underground,2006,58(4):217−228.
[57] ROLLAND W,ARNOLD I. Lignite mining in sensitive nature:Protection and compensation measures conducted by Vattenfall Europe Mining,exemplarily shown for the mines of Cottbus–Nord and Janschwalde[J]. World of Mining–Surface & Underground,2005,57(6):383−389.
[58] WHITTON B A. Acidic pit lakes:The legacy of coal and metal surface mines[M]. Germany Berlin:Springer,2013.
[59] HUTTON B,KAHAN I,NAIDU T,et al. Operating and maintenance experience at the EMalahleni water reclamation plant[C]//Proceedings of the International Mine Water Conference. Pretoria,South Africa,2009.
[60] 李庭,李井峰,杜文凤,等. 国外矿井水利用现状及特点分析[J]. 煤炭工程,2021,53(1):133−138.
LI Ting,LI Jingfeng,DU Wenfeng,et al. Current status and characteristics of mine water reuse in foreign countries[J]. Coal Engineering,2021,53(1):133−138.
[61] MASINDI V. Recovery of drinking water and valuable minerals from acid mine drainage using an integration of magnesite,lime,soda ash,CO2 and reverse osmosis treatment processes[J]. Journal of Environmental Chemical Engineering,2017,5(4):3136−3142.
[62] 袁亮. 废弃矿井资源综合开发利用助力实现“碳达峰、碳中和”目标[J]. 科技导报,2021,39(13):1.
YUAN Liang. Comprehensive development and utilization of abandoned mine resources,help achieve the goal of “emission peak and carbon neutralization”[J]. Science & Technology Review,2021,39(13):1.
[63] 浦海,许军策,卞正富,等. 关闭/废弃矿井地热能开发利用研究现状与进展[J]. 煤炭学报,2022,47(6):2243−2269.
PU Hai,XU Junce,BIAN Zhengfu,et al. Research status and progress of geothermal energy development and utilization from closed/abandoned coal mines[J]. Journal of China Coal Society,2022,47(6):2243−2269.
[64] RAMOS E P,BREEDE K,FALCONE G. Geothermal heat recovery from abandoned mines:A systematic review of projects implemented worldwide and a methodology for screening new projects[J]. Environmental Earth Sciences,2015,73:6783−6795.
[65] JESSOP A M,MACDONALD J K,SPENCE H. Clean energy from abandoned mines at Springhill,Nova Scotia[J]. Energy Sources,1995,17(1):93−106.
[66] Energeticon. Grubenwasserenergie für das Energeticon (GrEEn). Retrieved from http://www.energeticon.de/index.php/ort/die–aussenanlagen/das–green–projekt.Last accessed Sep 2013.
[67] VERHOEVEN R,WILLEMS E,HARCOUET–MENOU V,et al. Minewater 2.0 project in Heerlen the Netherlands:Transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling[J]. Energy Procedia,2014,46:58−67.
[68] MENENDEZ J,ORDONEZ A,FERNANDEZ–ORO J M,et al. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings[J]. Renewable Energy,2020,146:1166−1176.
[69] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
[70] HE Manchao,CAO Xiuling,XIE Qiao,et al. Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards[J]. Mining Science and Technology (China),2010,20(1):20−27.
[71] 马琳,段朝峰,安邓涛. 矿井水热能利用系统在大采深煤矿的应用[J]. 能源技术与管理,2017,42(1):141−143.
MA Lin,DUAN Chaofeng,AN Dengtao. Application of mine water and heat energy utilization system in deep coal mines[J]. Energy Technology and Management,2017,42(1):141−143.
Click below to download English version.
Progress of Research on Mine Water Treatment and Resource Utilization in China and Abroad.pdf (4341 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons