Coal Geology & Exploration
Abstract
In the new century, the coal industry has experienced a decade of rapid development, and the coal output has been stabilized at about 4.5 billion tons. The coal mine safety situation is generally good, with the multiple, frequent and even catastrophic accidents reduced, the major accidents at sometimes developed to be single and occasional, and the extraordinarily serious accidents were controlled effectively. Water hazard of mine is still the main type of coal mine hazards in China, and it is the second largest lethal reason after gas hazard. The analysis shows that the complex mining environment and the insufficient attention are the main reasons for the accident. The main technical reasons for the accident include the failure of three levels of protection, such as the exploration of hydrogeological conditions of mine field, the exploration and treatment of hidden hazards, and the identification of water inrush signs. Accordingly, three technical measures were proposed, detect and release water to eliminate the hidden hazards, identify the abnormal conditions, and evacuate in time according to the regulations. Meanwhile, the procedure of “investigation, design, construction and evaluation” for advanced water detection and release was standardized. In addition, it was emphasized that the exploration theory and technology system and the water control system with the corresponding latest progresses, as well as the intelligent accurate perception and identification technology, formed a good foundation for preventing risks. Looking forward to the future, the theoretical exploration of deep learning, intelligent perception and up-scaling methods and other theoretical explorations, as well as the breakthrough of “3D transparent geological model” and its properties characterization technology, is the fundamental way to solve the randomness of geological body, the time variability of fluid and the dynamic nature of mining activities, which could achieve the ultimate goal of mine water prevention and control in China.
Keywords
mine water hazard, accident causes, subjective and objective countermeasures, three gateways, the fundamental solution
DOI
10.12363/issn.1001-1986.22.11.0862
Recommended Citation
YIN Shangxian, WANG Yuguo, LI Wensheng,
et al.
(2023)
"Cause, countermeasures and solutions of water hazards in coal mines in China,"
Coal Geology & Exploration: Vol. 51:
Iss.
1, Article 20.
DOI: 10.12363/issn.1001-1986.22.11.0862
Available at:
https://cge.researchcommons.org/journal/vol51/iss1/20
Reference
[1] 国家矿山安全监察局. 矿山安全监察系统2021年度政府信息公开工作年度报告[R/OL]. (2022-03-30)[2023-01-11]. https://www.chinamine−safety.gov.cn/zfxxgk/zfxxgknb/2021/202203/t20220330_410653.shtml.
[2] 中国煤炭工业协会. 煤炭工业“十四五”结构调整指导意见[R/OL]. (2021-06-08)[2023-01-11]. http://www.coalchina.org.cn/uploadfile/2021/0609/20210609103655107.
[3] 光明网. 我国矿山安全生产形势依然严峻复杂 矿山安监部门多种手段严惩违法违规行为[R/OL]. (2022-03-18)[2023-01-11]. https://m.gmw. cn/baijia/2022–03/18/35595317.html.
[4] 丁百川. 我国煤矿主要灾害事故特点及防治对策[J]. 煤炭科学技术,2017,45(5):109−114.
DING Baichuan. Features and prevention countermeasures of major disasters occurred in China coal mine[J]. Coal Science and Technology,2017,45(5):109−114.
[5] 尹尚先,刘德民,连会青,等. 华北型煤田矿井突水灾害预警关键技术[M]. 北京:应急管理出版社,2021.
[6] 董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−37.
DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,35(5):34−37.
[7] 邱增强,蔡东红,童世杰,等. 矿井水害的基本特点及防治对策[J]. 煤炭科技,2011(2):74−76.
QIU Zengqiang,CAI Donghong,TONG Shijie,et al. Basic characteristics and prevention countermeasures of mine water disaster[J]. Coal Science & Technology Magazine,2011(2):74−76.
[8] 魏久传,肖乐乐,牛超,等. 2001—2013年中国矿井水害事故相关性因素特征分析[J]. 中国科技论文,2015,10(3):336−341.
WEI Jiuchuan,XIAO Lele,NIU Chao,et al. Characteristics analysis of the correlation factors of China mine water hazard accidents in 2001–2013[J]. China Sciencepaper,2015,10(3):336−341.
[9] 靳德武. 我国煤矿水害防治技术新进展及其方法论思考[J]. 煤炭科学技术,2017,45(5):141−147.
JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology,2017,45(5):141−147.
[10] 董书宁. 对中国煤矿水害频发的几个关键科学问题的探讨[J]. 煤炭学报,2010,35(1):66−71.
DONG Shuning. Some key scientific problems on water hazards frequently happened in China’s coal mines[J]. Journal of China Coal Society,2010,35(1):66−71.
[11] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.
YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on karst collapse column in North China Coalfield:Cause of origin,mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1−29.
[12] 尹尚先,王屹,尹慧超,等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报,2020,45(5):1855−1864.
YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full–time–space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855−1864.
[13] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181.
YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170−181.
[14] 丁湘,申斌学,郑忠友,等. 深部侏罗系矿井充水强度评价与水害风险管控[M]. 北京:应急管理出版社,2022.
[15] 国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017.
[16] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:应急管理出版社,2022.
[17] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
[18] 国家煤矿安全监察局. 煤矿重大事故隐患判定标准[S]. 北京:应急管理出版社,2020.
[19] 中国国家标准化管理委员会. 矿区水文地质工程地质勘查规范:GB/T 12719—2021[S]. 北京:中国标准出版社,2021.
[20] 王佟. 中国煤炭地质综合勘查理论与技术新体系[M]. 北京:科学出版社,2013.
[21] 夏军,左其亭. 国际水文科学研究的新进展[J]. 地球科学进展,2006,21(3):256−261.
XIA Jun,ZUO Qiting. Advances in international hydrological science research[J]. Advances in Earth Science,2006,21(3):256−261.
[22] YIN Huichao,WU Qiang,YIN Shangxian,et al. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short–term memory and isolation forest[J]. Journal of Hydrology,2023,616:128813.
[23] 武强. 煤矿防治水细则解读[M]. 北京:煤炭工业出版社,2018.
[24] 国家煤矿安全监察局. 煤矿水害防治监管监察执法要点(2020年版)[R/OL]. (2020-06-03)[2023-01-11]. http://finance.sina.com.cn/money/future/indu/2022-06-29/doc–imizmscu9279130.shtml.
[25] 尹尚先. 新版《煤矿安全规程》(防治水部分)修订要点解读与讨论[J]. 煤炭科学技术,2017,45(7):139−143.
YIN Shangxian. Interpretation and discussion on revised key points of mine water prevention part from Coal Mine Safety Regulations[J]. Coal Science and Technology,2017,45(7):139−143.
[26] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 煤炭矿井防治水设计规范:GB 51070—2014[S]. 北京:计划出版社,2015.
[27] 国家煤矿安全监察局. 煤矿防治水规定释义[M]. 徐州:中国矿业大学出版社,2009.
[28] 袁亮. 煤矿安全规程解读:2022[M]. 北京:应急管理出版社,2022.
[29] 胡炳南,张华兴,申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京:煤炭工业出版社,2017.
[30] 贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17−24.
HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial internet of things[J]. Industry and Mine Automation,2021,47(6):17−24.
[31] LI Bo,ZHANG Wenquan,GAO Bing,et al. Research status and development trends of mine floor water inrush grade prediction[J]. Geotechnical and Geological Engineering,2018,36(3):1419−1429.
[32] 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报,2010,16(1):1−6.
XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities,2010,16(1):1−6.
[33] ZHANG Jiangjiang,ZHENG Qiang,WU Laosheng,et al. Using deep learning to improve ensemble smoother:Applications to subsurface characterization[J]. Water Resources Research,2020,56(12):1−15.
[34] CHEN Junjun,DAI Zhenxue,DONG Shuning,et al. Integration of deep learning and information theory for designing monitoring networks in heterogeneous aquifer systems[J]. Water Resources Research,2022,58(10):e2022WR032429.
[35] XU Lulu,CAI Meifeng,DONG Shuning,et al. An upscaling approach to predict mine water inflow from roof sandstone aquifers[J]. Journal of Hydrology,2022,612:128314.
[36] ZHANG Xiaoying,MA Funing,YIN Shangxian,et al. Application of upscaling methods for fluid flow and mass transport in multi–scale heterogeneous media:A critical review[J]. Applied Energy,2021,303:117603.
[37] 程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024−2032.
CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024−2032.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons